(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(twice, f), x) → app(f, app(f, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(fmap, nil), x) → nil
app(app(fmap, app(app(cons, f), t_f)), x) → app(app(cons, app(f, x)), app(app(fmap, t_f), x))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(twice, f), x) → APP(f, app(f, x))
APP(app(twice, f), x) → APP(f, x)
APP(app(map, f), app(app(cons, h), t)) → APP(app(cons, app(f, h)), app(app(map, f), t))
APP(app(map, f), app(app(cons, h), t)) → APP(cons, app(f, h))
APP(app(map, f), app(app(cons, h), t)) → APP(f, h)
APP(app(map, f), app(app(cons, h), t)) → APP(app(map, f), t)
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(app(cons, app(f, x)), app(app(fmap, t_f), x))
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(cons, app(f, x))
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(f, x)
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(app(fmap, t_f), x)
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(fmap, t_f)

The TRS R consists of the following rules:

app(app(twice, f), x) → app(f, app(f, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(fmap, nil), x) → nil
app(app(fmap, app(app(cons, f), t_f)), x) → app(app(cons, app(f, x)), app(app(fmap, t_f), x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(twice, f), x) → APP(f, x)
APP(app(twice, f), x) → APP(f, app(f, x))
APP(app(map, f), app(app(cons, h), t)) → APP(f, h)
APP(app(map, f), app(app(cons, h), t)) → APP(app(map, f), t)
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(f, x)

The TRS R consists of the following rules:

app(app(twice, f), x) → app(f, app(f, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(fmap, nil), x) → nil
app(app(fmap, app(app(cons, f), t_f)), x) → app(app(cons, app(f, x)), app(app(fmap, t_f), x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
twice  =  twice
map  =  map
cons  =  cons
fmap  =  fmap
t_f  =  t_f
app(x1, x2)  =  app(x1, x2)

From the DPs we obtained the following set of size-change graphs:

  • APP(app(map, f), app(app(cons, h), t)) → APP(app(map, f), t) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 >= 1, 2 > 2

  • APP(app(map, f), app(app(cons, h), t)) → APP(f, h) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 > 2

  • APP(app(twice, f), x) → APP(f, x) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 >= 2

  • APP(app(twice, f), x) → APP(f, app(f, x)) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

  • APP(app(fmap, app(app(cons, f), t_f)), x) → APP(f, x) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 >= 2

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(6) TRUE