(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(app(app(compose, f), g), x) → app(f, app(g, x))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(app(compose, f), g), x) → APP(f, app(g, x))
APP(app(app(compose, f), g), x) → APP(g, x)
The TRS R consists of the following rules:
app(app(app(compose, f), g), x) → app(f, app(g, x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
APP(app(app(compose, f), g), x) → APP(f, app(g, x))
APP(app(app(compose, f), g), x) → APP(g, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
APP2 > [app2, compose]
Status:
APP2: [1,2]
app2: [1,2]
compose: []
The following usable rules [FROCOS05] were oriented:
app(app(app(compose, f), g), x) → app(f, app(g, x))
(4) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
app(app(app(compose, f), g), x) → app(f, app(g, x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(6) TRUE