(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(add, app(s, x)), y) → APP(s, app(app(add, x), y))
APP(app(add, app(s, x)), y) → APP(app(add, x), y)
APP(app(add, app(s, x)), y) → APP(add, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(add, app(s, x)), y) → APP(app(add, x), y)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Combined order from the following AFS and order.
app(x1, x2)  =  app(x2)
add  =  add
0  =  0
id  =  id
map  =  map
cons  =  cons
s  =  s

Lexicographic path order with status [LPO].
Quasi-Precedence:

app1 > id

Status:
app1: [1]
add: []
0: []
id: []
map: []
cons: []
s: []

AFS:
app(x1, x2)  =  app(x2)
add  =  add
0  =  0
id  =  id
map  =  map
cons  =  cons
s  =  s

From the DPs we obtained the following set of size-change graphs:

  • APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 >= 1, 2 > 2

  • APP(app(map, f), app(app(cons, x), xs)) → APP(f, x) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1

  • APP(app(add, app(s, x)), y) → APP(app(add, x), y) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 >= 2

We oriented the following set of usable rules [AAECC05,FROCOS05].


app(add, 0) → id

(6) TRUE