(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(add, app(s, x)), y) → APP(s, app(app(add, x), y))
APP(app(add, app(s, x)), y) → APP(app(add, x), y)
APP(app(add, app(s, x)), y) → APP(add, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(add, app(s, x)), y) → APP(app(add, x), y)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(x1, x2)  =  APP(x1, x2)

Tags:
APP has tags [1,0]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Recursive path order with status [RPO].
Quasi-Precedence:
cons > [app2, map]
[add, s] > [app2, map]
0 > id

Status:
app2: [1,2]
map: multiset
cons: multiset
add: multiset
s: multiset
0: multiset
id: multiset


The following usable rules [FROCOS05] were oriented:

app(add, 0) → id

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(add, app(s, x)), y) → APP(app(add, x), y)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(8) Complex Obligation (AND)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(x1, x2)  =  APP(x2)

Tags:
APP has tags [0,1]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Recursive path order with status [RPO].
Quasi-Precedence:
[app2, cons]

Status:
app2: multiset
map: multiset
cons: multiset


The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(add, app(s, x)), y) → APP(app(add, x), y)

The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(add, app(s, x)), y) → APP(app(add, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(x1, x2)  =  APP(x1)

Tags:
APP has tags [1,1]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
app(x1, x2)  =  app(x2)
add  =  add
s  =  s
0  =  0
id  =  id

Recursive path order with status [RPO].
Quasi-Precedence:
[app1, add] > [0, id]

Status:
app1: multiset
add: multiset
s: multiset
0: multiset
id: multiset


The following usable rules [FROCOS05] were oriented:

app(add, 0) → id

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(id, x) → x
app(add, 0) → id
app(app(add, app(s, x)), y) → app(s, app(app(add, x), y))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE