(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(app(comp, f), g), x) → app(f, app(g, x))
app(twice, f) → app(app(comp, f), f)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(app(comp, f), g), x) → APP(f, app(g, x))
APP(app(app(comp, f), g), x) → APP(g, x)
APP(twice, f) → APP(app(comp, f), f)
APP(twice, f) → APP(comp, f)

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(app(comp, f), g), x) → app(f, app(g, x))
app(twice, f) → app(app(comp, f), f)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(comp, f), g), x) → APP(f, app(g, x))
APP(app(app(comp, f), g), x) → APP(g, x)

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(app(comp, f), g), x) → app(f, app(g, x))
app(twice, f) → app(app(comp, f), f)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(x0, x1, x2)  =  APP(x0, x1)

Tags:
APP has argument tags [1,0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
APP(x1, x2)  =  APP
app(x1, x2)  =  app(x1, x2)
map  =  map
cons  =  cons
comp  =  comp
nil  =  nil
twice  =  twice

Lexicographic path order with status [LPO].
Quasi-Precedence:
[APP, map] > [app2, nil] > cons
[APP, map] > [app2, nil] > comp

Status:
APP: []
app2: [2,1]
map: []
cons: []
comp: []
nil: []
twice: []


The following usable rules [FROCOS05] were oriented: none

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(app(app(comp, f), g), x) → APP(f, app(g, x))
APP(app(app(comp, f), g), x) → APP(g, x)

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(app(comp, f), g), x) → app(f, app(g, x))
app(twice, f) → app(app(comp, f), f)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(8) Complex Obligation (AND)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(app(comp, f), g), x) → app(f, app(g, x))
app(twice, f) → app(app(comp, f), f)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(x0, x1, x2)  =  APP(x2)

Tags:
APP has argument tags [1,1,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
APP(x1, x2)  =  x2
app(x1, x2)  =  app(x1, x2)
map  =  map
cons  =  cons

Lexicographic path order with status [LPO].
Quasi-Precedence:
map > app2

Status:
app2: [2,1]
map: []
cons: []


The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(app(comp, f), g), x) → app(f, app(g, x))
app(twice, f) → app(app(comp, f), f)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(comp, f), g), x) → APP(g, x)
APP(app(app(comp, f), g), x) → APP(f, app(g, x))

The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(app(comp, f), g), x) → app(f, app(g, x))
app(twice, f) → app(app(comp, f), f)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(app(comp, f), g), x) → APP(g, x)
APP(app(app(comp, f), g), x) → APP(f, app(g, x))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(x0, x1, x2)  =  APP(x1)

Tags:
APP has argument tags [2,3,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1)
app(x1, x2)  =  app(x1, x2)
comp  =  comp
map  =  map
nil  =  nil
cons  =  cons
twice  =  twice

Lexicographic path order with status [LPO].
Quasi-Precedence:
comp > APP1 > [app2, twice] > map
cons > [app2, twice] > map

Status:
APP1: [1]
app2: [2,1]
comp: []
map: []
nil: []
cons: []
twice: []


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(app(comp, f), g), x) → app(f, app(g, x))
app(twice, f) → app(app(comp, f), f)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE