(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(neq, 0), 0) → false
app(app(neq, 0), app(s, y)) → true
app(app(neq, app(s, x)), 0) → true
app(app(neq, app(s, x)), app(s, y)) → app(app(neq, x), y)
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, y), ys)) → app(app(app(filtersub, app(f, y)), f), app(app(cons, y), ys))
app(app(app(filtersub, true), f), app(app(cons, y), ys)) → app(app(cons, y), app(app(filter, f), ys))
app(app(app(filtersub, false), f), app(app(cons, y), ys)) → app(app(filter, f), ys)
nonzeroapp(filter, app(neq, 0))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(neq, app(s, x)), app(s, y)) → APP(app(neq, x), y)
APP(app(neq, app(s, x)), app(s, y)) → APP(neq, x)
APP(app(filter, f), app(app(cons, y), ys)) → APP(app(app(filtersub, app(f, y)), f), app(app(cons, y), ys))
APP(app(filter, f), app(app(cons, y), ys)) → APP(app(filtersub, app(f, y)), f)
APP(app(filter, f), app(app(cons, y), ys)) → APP(filtersub, app(f, y))
APP(app(filter, f), app(app(cons, y), ys)) → APP(f, y)
APP(app(app(filtersub, true), f), app(app(cons, y), ys)) → APP(app(cons, y), app(app(filter, f), ys))
APP(app(app(filtersub, true), f), app(app(cons, y), ys)) → APP(app(filter, f), ys)
APP(app(app(filtersub, true), f), app(app(cons, y), ys)) → APP(filter, f)
APP(app(app(filtersub, false), f), app(app(cons, y), ys)) → APP(app(filter, f), ys)
APP(app(app(filtersub, false), f), app(app(cons, y), ys)) → APP(filter, f)
NONZEROAPP(filter, app(neq, 0))
NONZEROAPP(neq, 0)

The TRS R consists of the following rules:

app(app(neq, 0), 0) → false
app(app(neq, 0), app(s, y)) → true
app(app(neq, app(s, x)), 0) → true
app(app(neq, app(s, x)), app(s, y)) → app(app(neq, x), y)
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, y), ys)) → app(app(app(filtersub, app(f, y)), f), app(app(cons, y), ys))
app(app(app(filtersub, true), f), app(app(cons, y), ys)) → app(app(cons, y), app(app(filter, f), ys))
app(app(app(filtersub, false), f), app(app(cons, y), ys)) → app(app(filter, f), ys)
nonzeroapp(filter, app(neq, 0))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 8 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(neq, app(s, x)), app(s, y)) → APP(app(neq, x), y)

The TRS R consists of the following rules:

app(app(neq, 0), 0) → false
app(app(neq, 0), app(s, y)) → true
app(app(neq, app(s, x)), 0) → true
app(app(neq, app(s, x)), app(s, y)) → app(app(neq, x), y)
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, y), ys)) → app(app(app(filtersub, app(f, y)), f), app(app(cons, y), ys))
app(app(app(filtersub, true), f), app(app(cons, y), ys)) → app(app(cons, y), app(app(filter, f), ys))
app(app(app(filtersub, false), f), app(app(cons, y), ys)) → app(app(filter, f), ys)
nonzeroapp(filter, app(neq, 0))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
neq  =  neq
s  =  s
app(x1, x2)  =  app(x2)

From the DPs we obtained the following set of size-change graphs:

  • APP(app(neq, app(s, x)), app(s, y)) → APP(app(neq, x), y) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 > 2

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(7) TRUE

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(filter, f), app(app(cons, y), ys)) → APP(app(app(filtersub, app(f, y)), f), app(app(cons, y), ys))
APP(app(app(filtersub, true), f), app(app(cons, y), ys)) → APP(app(filter, f), ys)
APP(app(filter, f), app(app(cons, y), ys)) → APP(f, y)
APP(app(app(filtersub, false), f), app(app(cons, y), ys)) → APP(app(filter, f), ys)

The TRS R consists of the following rules:

app(app(neq, 0), 0) → false
app(app(neq, 0), app(s, y)) → true
app(app(neq, app(s, x)), 0) → true
app(app(neq, app(s, x)), app(s, y)) → app(app(neq, x), y)
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, y), ys)) → app(app(app(filtersub, app(f, y)), f), app(app(cons, y), ys))
app(app(app(filtersub, true), f), app(app(cons, y), ys)) → app(app(cons, y), app(app(filter, f), ys))
app(app(app(filtersub, false), f), app(app(cons, y), ys)) → app(app(filter, f), ys)
nonzeroapp(filter, app(neq, 0))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
filter  =  filter
cons  =  cons
filtersub  =  filtersub
true  =  true
false  =  false
app(x1, x2)  =  app(x1, x2)

From the DPs we obtained the following set of size-change graphs:

  • APP(app(filter, f), app(app(cons, y), ys)) → APP(f, y) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 > 2

  • APP(app(filter, f), app(app(cons, y), ys)) → APP(app(app(filtersub, app(f, y)), f), app(app(cons, y), ys)) (allowed arguments on rhs = {2})
    The graph contains the following edges 2 >= 2

  • APP(app(app(filtersub, true), f), app(app(cons, y), ys)) → APP(app(filter, f), ys) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 2 > 2

  • APP(app(app(filtersub, false), f), app(app(cons, y), ys)) → APP(app(filter, f), ys) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 2 > 2

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(10) TRUE