(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(mapbt, f), app(leaf, x)) → app(leaf, app(f, x))
app(app(mapbt, f), app(app(app(branch, x), l), r)) → app(app(app(branch, app(f, x)), app(app(mapbt, f), l)), app(app(mapbt, f), r))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(mapbt, f), app(leaf, x)) → APP(leaf, app(f, x))
APP(app(mapbt, f), app(leaf, x)) → APP(f, x)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(app(branch, app(f, x)), app(app(mapbt, f), l)), app(app(mapbt, f), r))
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(branch, app(f, x)), app(app(mapbt, f), l))
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(branch, app(f, x))
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(f, x)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), l)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), r)

The TRS R consists of the following rules:

app(app(mapbt, f), app(leaf, x)) → app(leaf, app(f, x))
app(app(mapbt, f), app(app(app(branch, x), l), r)) → app(app(app(branch, app(f, x)), app(app(mapbt, f), l)), app(app(mapbt, f), r))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(f, x)
APP(app(mapbt, f), app(leaf, x)) → APP(f, x)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), l)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), r)

The TRS R consists of the following rules:

app(app(mapbt, f), app(leaf, x)) → app(leaf, app(f, x))
app(app(mapbt, f), app(app(app(branch, x), l), r)) → app(app(app(branch, app(f, x)), app(app(mapbt, f), l)), app(app(mapbt, f), r))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
mapbt  =  mapbt
branch  =  branch
leaf  =  leaf
app(x1, x2)  =  app(x1, x2)

From the DPs we obtained the following set of size-change graphs:

  • APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(f, x) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 > 2

  • APP(app(mapbt, f), app(leaf, x)) → APP(f, x) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 > 2

  • APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), l) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 >= 1, 2 > 2

  • APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), r) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 >= 1, 2 > 2

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(6) TRUE