(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(mapbt, f), app(leaf, x)) → app(leaf, app(f, x))
app(app(mapbt, f), app(app(app(branch, x), l), r)) → app(app(app(branch, app(f, x)), app(app(mapbt, f), l)), app(app(mapbt, f), r))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(mapbt, f), app(leaf, x)) → APP(leaf, app(f, x))
APP(app(mapbt, f), app(leaf, x)) → APP(f, x)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(app(branch, app(f, x)), app(app(mapbt, f), l)), app(app(mapbt, f), r))
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(branch, app(f, x)), app(app(mapbt, f), l))
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(branch, app(f, x))
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(f, x)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), l)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), r)

The TRS R consists of the following rules:

app(app(mapbt, f), app(leaf, x)) → app(leaf, app(f, x))
app(app(mapbt, f), app(app(app(branch, x), l), r)) → app(app(app(branch, app(f, x)), app(app(mapbt, f), l)), app(app(mapbt, f), r))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(f, x)
APP(app(mapbt, f), app(leaf, x)) → APP(f, x)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), l)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), r)

The TRS R consists of the following rules:

app(app(mapbt, f), app(leaf, x)) → app(leaf, app(f, x))
app(app(mapbt, f), app(app(app(branch, x), l), r)) → app(app(app(branch, app(f, x)), app(app(mapbt, f), l)), app(app(mapbt, f), r))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(f, x)
APP(app(mapbt, f), app(leaf, x)) → APP(f, x)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), l)
APP(app(mapbt, f), app(app(app(branch, x), l), r)) → APP(app(mapbt, f), r)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
mapbt > [APP2, branch] > app2
leaf > [APP2, branch] > app2

Status:
APP2: [2,1]
app2: [2,1]
mapbt: []
branch: []
leaf: []


The following usable rules [FROCOS05] were oriented: none

(6) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(mapbt, f), app(leaf, x)) → app(leaf, app(f, x))
app(app(mapbt, f), app(app(app(branch, x), l), r)) → app(app(app(branch, app(f, x)), app(app(mapbt, f), l)), app(app(mapbt, f), r))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(8) TRUE