(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
add → app(curry, plus)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(plus, app(s, x)), y) → APP(s, app(app(plus, x), y))
APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
APP(app(plus, app(s, x)), y) → APP(plus, x)
APP(app(app(curry, f), x), y) → APP(app(f, x), y)
APP(app(app(curry, f), x), y) → APP(f, x)
ADD → APP(curry, plus)
The TRS R consists of the following rules:
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
add → app(curry, plus)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
The TRS R consists of the following rules:
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
add → app(curry, plus)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
APP(app(plus, app(s, x)), y) → APP(app(plus, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(
x0,
x1,
x2) =
APP(
x0)
Tags:
APP has argument tags [1,3,1] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
APP(
x1,
x2) =
APP(
x1)
app(
x1,
x2) =
app(
x1,
x2)
plus =
plus
s =
s
Lexicographic path order with status [LPO].
Quasi-Precedence:
[APP1, app2, plus]
Status:
APP1: [1]
app2: [2,1]
plus: []
s: []
The following usable rules [FROCOS05] were oriented:
none
(7) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
add → app(curry, plus)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(9) TRUE
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(app(curry, f), x), y) → APP(f, x)
APP(app(app(curry, f), x), y) → APP(app(f, x), y)
The TRS R consists of the following rules:
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
add → app(curry, plus)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
APP(app(app(curry, f), x), y) → APP(f, x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(
x0,
x1,
x2) =
APP(
x0,
x1)
Tags:
APP has argument tags [3,0,0] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
APP(
x1,
x2) =
APP(
x2)
app(
x1,
x2) =
app(
x1,
x2)
curry =
curry
plus =
plus
0 =
0
s =
s
Lexicographic path order with status [LPO].
Quasi-Precedence:
app2 > [APP1, curry] > s
app2 > plus > s
0 > s
Status:
APP1: [1]
app2: [1,2]
curry: []
plus: []
0: []
s: []
The following usable rules [FROCOS05] were oriented:
none
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(app(app(curry, f), x), y) → APP(app(f, x), y)
The TRS R consists of the following rules:
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
add → app(curry, plus)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
APP(app(app(curry, f), x), y) → APP(app(f, x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(
x0,
x1,
x2) =
APP(
x1)
Tags:
APP has argument tags [0,0,2] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
APP(
x1,
x2) =
x1
app(
x1,
x2) =
app(
x1,
x2)
curry =
curry
plus =
plus
0 =
0
s =
s
Lexicographic path order with status [LPO].
Quasi-Precedence:
[app2, curry] > s > plus
0 > plus
Status:
app2: [1,2]
curry: []
plus: []
0: []
s: []
The following usable rules [FROCOS05] were oriented:
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
(14) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
app(app(plus, 0), y) → y
app(app(plus, app(s, x)), y) → app(s, app(app(plus, x), y))
app(app(app(curry, f), x), y) → app(app(f, x), y)
add → app(curry, plus)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(16) TRUE