(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, y), ys)) → app(app(app(filtersub, app(f, y)), f), app(app(cons, y), ys))
app(app(app(filtersub, true), f), app(app(cons, y), ys)) → app(app(cons, y), app(app(filter, f), ys))
app(app(app(filtersub, false), f), app(app(cons, y), ys)) → app(app(filter, f), ys)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(filter, f), app(app(cons, y), ys)) → APP(app(app(filtersub, app(f, y)), f), app(app(cons, y), ys))
APP(app(filter, f), app(app(cons, y), ys)) → APP(app(filtersub, app(f, y)), f)
APP(app(filter, f), app(app(cons, y), ys)) → APP(filtersub, app(f, y))
APP(app(filter, f), app(app(cons, y), ys)) → APP(f, y)
APP(app(app(filtersub, true), f), app(app(cons, y), ys)) → APP(app(cons, y), app(app(filter, f), ys))
APP(app(app(filtersub, true), f), app(app(cons, y), ys)) → APP(app(filter, f), ys)
APP(app(app(filtersub, true), f), app(app(cons, y), ys)) → APP(filter, f)
APP(app(app(filtersub, false), f), app(app(cons, y), ys)) → APP(app(filter, f), ys)
APP(app(app(filtersub, false), f), app(app(cons, y), ys)) → APP(filter, f)

The TRS R consists of the following rules:

app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, y), ys)) → app(app(app(filtersub, app(f, y)), f), app(app(cons, y), ys))
app(app(app(filtersub, true), f), app(app(cons, y), ys)) → app(app(cons, y), app(app(filter, f), ys))
app(app(app(filtersub, false), f), app(app(cons, y), ys)) → app(app(filter, f), ys)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(filtersub, true), f), app(app(cons, y), ys)) → APP(app(filter, f), ys)
APP(app(filter, f), app(app(cons, y), ys)) → APP(f, y)
APP(app(app(filtersub, false), f), app(app(cons, y), ys)) → APP(app(filter, f), ys)

The TRS R consists of the following rules:

app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, y), ys)) → app(app(app(filtersub, app(f, y)), f), app(app(cons, y), ys))
app(app(app(filtersub, true), f), app(app(cons, y), ys)) → app(app(cons, y), app(app(filter, f), ys))
app(app(app(filtersub, false), f), app(app(cons, y), ys)) → app(app(filter, f), ys)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(app(filter, f), app(app(cons, y), ys)) → APP(f, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
APP(x1, x2)  =  APP(x1)

Tags:
APP has tags [1,1]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
app(x1, x2)  =  app(x2)
filtersub  =  filtersub
true  =  true
cons  =  cons
filter  =  filter
false  =  false

Homeomorphic Embedding Order
The following usable rules [FROCOS05] were oriented: none

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(app(app(filtersub, true), f), app(app(cons, y), ys)) → APP(app(filter, f), ys)
APP(app(app(filtersub, false), f), app(app(cons, y), ys)) → APP(app(filter, f), ys)

The TRS R consists of the following rules:

app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, y), ys)) → app(app(app(filtersub, app(f, y)), f), app(app(cons, y), ys))
app(app(app(filtersub, true), f), app(app(cons, y), ys)) → app(app(cons, y), app(app(filter, f), ys))
app(app(app(filtersub, false), f), app(app(cons, y), ys)) → app(app(filter, f), ys)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(8) TRUE