0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 QDPSizeChangeProof (⇔)
↳4 TRUE
r(xs, ys, zs, nil) → xs
r(xs, nil, zs, cons(w, ws)) → r(xs, xs, cons(succ(zero), zs), ws)
r(xs, cons(y, ys), nil, cons(w, ws)) → r(xs, xs, cons(succ(zero), nil), ws)
r(xs, cons(y, ys), cons(z, zs), cons(w, ws)) → r(ys, cons(y, ys), zs, cons(succ(zero), cons(w, ws)))
R(xs, nil, zs, cons(w, ws)) → R(xs, xs, cons(succ(zero), zs), ws)
R(xs, cons(y, ys), nil, cons(w, ws)) → R(xs, xs, cons(succ(zero), nil), ws)
R(xs, cons(y, ys), cons(z, zs), cons(w, ws)) → R(ys, cons(y, ys), zs, cons(succ(zero), cons(w, ws)))
r(xs, ys, zs, nil) → xs
r(xs, nil, zs, cons(w, ws)) → r(xs, xs, cons(succ(zero), zs), ws)
r(xs, cons(y, ys), nil, cons(w, ws)) → r(xs, xs, cons(succ(zero), nil), ws)
r(xs, cons(y, ys), cons(z, zs), cons(w, ws)) → r(ys, cons(y, ys), zs, cons(succ(zero), cons(w, ws)))
Order:Homeomorphic Embedding Order
AFS:
nil = nil
zero = zero
succ(x1) = succ
cons(x1, x2) = cons(x2)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none