(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACK(s(x), 0) → ACK(x, s(0))
ACK(s(x), s(y)) → ACK(x, ack(s(x), y))
ACK(s(x), s(y)) → ACK(s(x), y)
F(s(x), y) → F(x, s(x))
F(x, s(y)) → F(y, x)
F(x, y) → ACK(x, y)
ACK(s(x), y) → F(x, x)
The TRS R consists of the following rules:
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
ACK(s(x), 0) → ACK(x, s(0))
ACK(s(x), s(y)) → ACK(x, ack(s(x), y))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACK(
x0,
x1,
x2) =
ACK(
x0)
F(
x0,
x1,
x2) =
F(
x0,
x1,
x2)
Tags:
ACK has argument tags [2,5,5] and root tag 0
F has argument tags [2,2,1] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(0) = 1
POL(ACK(x1, x2)) = x1
POL(F(x1, x2)) = 1
POL(ack(x1, x2)) = 1 + x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
none
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACK(s(x), s(y)) → ACK(s(x), y)
F(s(x), y) → F(x, s(x))
F(x, s(y)) → F(y, x)
F(x, y) → ACK(x, y)
ACK(s(x), y) → F(x, x)
The TRS R consists of the following rules:
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(s(x), y) → F(x, s(x))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACK(
x0,
x1,
x2) =
ACK(
x1,
x2)
F(
x0,
x1,
x2) =
F(
x0,
x1,
x2)
Tags:
ACK has argument tags [4,1,0] and root tag 0
F has argument tags [1,4,0] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(ACK(x1, x2)) = 1
POL(F(x1, x2)) = 1
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
none
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACK(s(x), s(y)) → ACK(s(x), y)
F(x, s(y)) → F(y, x)
F(x, y) → ACK(x, y)
ACK(s(x), y) → F(x, x)
The TRS R consists of the following rules:
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
ACK(s(x), y) → F(x, x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACK(
x0,
x1,
x2) =
ACK(
x0,
x1)
F(
x0,
x1,
x2) =
F(
x1,
x2)
Tags:
ACK has argument tags [0,0,4] and root tag 0
F has argument tags [0,0,0] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(ACK(x1, x2)) = 0
POL(F(x1, x2)) = x1
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
none
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACK(s(x), s(y)) → ACK(s(x), y)
F(x, s(y)) → F(y, x)
F(x, y) → ACK(x, y)
The TRS R consists of the following rules:
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.
(10) Complex Obligation (AND)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACK(s(x), s(y)) → ACK(s(x), y)
The TRS R consists of the following rules:
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
ACK(s(x), s(y)) → ACK(s(x), y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACK(
x0,
x1,
x2) =
ACK(
x2)
Tags:
ACK has argument tags [0,3,0] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(ACK(x1, x2)) = 1 + x1
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
none
(13) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(14) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(15) TRUE
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(x, s(y)) → F(y, x)
The TRS R consists of the following rules:
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(x, s(y)) → F(y, x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(
x0,
x1,
x2) =
F(
x1,
x2)
Tags:
F has argument tags [1,3,1] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(F(x1, x2)) = x1
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
none
(18) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(20) TRUE