0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPOrderProof (⇔)
↳7 QDP
↳8 PisEmptyProof (⇔)
↳9 TRUE
↳10 QDP
↳11 QDPOrderProof (⇔)
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
plus(s(s(x)), y) → s(plus(x, s(y)))
plus(x, s(s(y))) → s(plus(s(x), y))
plus(s(0), y) → s(y)
plus(0, y) → y
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, plus(y, ack(s(x), y)))
PLUS(s(s(x)), y) → PLUS(x, s(y))
PLUS(x, s(s(y))) → PLUS(s(x), y)
ACK(s(x), 0) → ACK(x, s(0))
ACK(s(x), s(y)) → ACK(x, plus(y, ack(s(x), y)))
ACK(s(x), s(y)) → PLUS(y, ack(s(x), y))
ACK(s(x), s(y)) → ACK(s(x), y)
plus(s(s(x)), y) → s(plus(x, s(y)))
plus(x, s(s(y))) → s(plus(s(x), y))
plus(s(0), y) → s(y)
plus(0, y) → y
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, plus(y, ack(s(x), y)))
PLUS(x, s(s(y))) → PLUS(s(x), y)
PLUS(s(s(x)), y) → PLUS(x, s(y))
plus(s(s(x)), y) → s(plus(x, s(y)))
plus(x, s(s(y))) → s(plus(s(x), y))
plus(s(0), y) → s(y)
plus(0, y) → y
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, plus(y, ack(s(x), y)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(x, s(s(y))) → PLUS(s(x), y)
PLUS(s(s(x)), y) → PLUS(x, s(y))
POL(PLUS(x1, x2)) = x1 + x2
POL(s(x1)) = 1 + x1
plus(s(s(x)), y) → s(plus(x, s(y)))
plus(x, s(s(y))) → s(plus(s(x), y))
plus(s(0), y) → s(y)
plus(0, y) → y
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, plus(y, ack(s(x), y)))
ACK(s(x), s(y)) → ACK(x, plus(y, ack(s(x), y)))
ACK(s(x), 0) → ACK(x, s(0))
ACK(s(x), s(y)) → ACK(s(x), y)
plus(s(s(x)), y) → s(plus(x, s(y)))
plus(x, s(s(y))) → s(plus(s(x), y))
plus(s(0), y) → s(y)
plus(0, y) → y
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, plus(y, ack(s(x), y)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACK(s(x), s(y)) → ACK(x, plus(y, ack(s(x), y)))
ACK(s(x), 0) → ACK(x, s(0))
POL(0) = 0
POL(ACK(x1, x2)) = x1
POL(ack(x1, x2)) = 0
POL(plus(x1, x2)) = 0
POL(s(x1)) = 1 + x1
ACK(s(x), s(y)) → ACK(s(x), y)
plus(s(s(x)), y) → s(plus(x, s(y)))
plus(x, s(s(y))) → s(plus(s(x), y))
plus(s(0), y) → s(y)
plus(0, y) → y
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, plus(y, ack(s(x), y)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACK(s(x), s(y)) → ACK(s(x), y)
POL(ACK(x1, x2)) = x2
POL(s(x1)) = 1 + x1
plus(s(s(x)), y) → s(plus(x, s(y)))
plus(x, s(s(y))) → s(plus(s(x), y))
plus(s(0), y) → s(y)
plus(0, y) → y
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, plus(y, ack(s(x), y)))