(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

intlist(nil) → nil
int(s(x), 0) → nil
int(x, x) → cons(x, nil)
intlist(cons(x, y)) → cons(s(x), intlist(y))
int(s(x), s(y)) → intlist(int(x, y))
int(0, s(y)) → cons(0, int(s(0), s(y)))
intlist(cons(x, nil)) → cons(s(x), nil)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INTLIST(cons(x, y)) → INTLIST(y)
INT(s(x), s(y)) → INTLIST(int(x, y))
INT(s(x), s(y)) → INT(x, y)
INT(0, s(y)) → INT(s(0), s(y))

The TRS R consists of the following rules:

intlist(nil) → nil
int(s(x), 0) → nil
int(x, x) → cons(x, nil)
intlist(cons(x, y)) → cons(s(x), intlist(y))
int(s(x), s(y)) → intlist(int(x, y))
int(0, s(y)) → cons(0, int(s(0), s(y)))
intlist(cons(x, nil)) → cons(s(x), nil)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INTLIST(cons(x, y)) → INTLIST(y)

The TRS R consists of the following rules:

intlist(nil) → nil
int(s(x), 0) → nil
int(x, x) → cons(x, nil)
intlist(cons(x, y)) → cons(s(x), intlist(y))
int(s(x), s(y)) → intlist(int(x, y))
int(0, s(y)) → cons(0, int(s(0), s(y)))
intlist(cons(x, nil)) → cons(s(x), nil)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
cons(x1, x2)  =  cons(x2)

From the DPs we obtained the following set of size-change graphs:

  • INTLIST(cons(x, y)) → INTLIST(y) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(7) TRUE

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INT(0, s(y)) → INT(s(0), s(y))
INT(s(x), s(y)) → INT(x, y)

The TRS R consists of the following rules:

intlist(nil) → nil
int(s(x), 0) → nil
int(x, x) → cons(x, nil)
intlist(cons(x, y)) → cons(s(x), intlist(y))
int(s(x), s(y)) → intlist(int(x, y))
int(0, s(y)) → cons(0, int(s(0), s(y)))
intlist(cons(x, nil)) → cons(s(x), nil)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
0  =  0
s(x1)  =  s(x1)

From the DPs we obtained the following set of size-change graphs:

  • INT(s(x), s(y)) → INT(x, y) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 > 2

  • INT(0, s(y)) → INT(s(0), s(y)) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 2 >= 2

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(10) TRUE