(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
intlist(nil) → nil
int(s(x), 0) → nil
int(x, x) → cons(x, nil)
intlist(cons(x, y)) → cons(s(x), intlist(y))
int(s(x), s(y)) → intlist(int(x, y))
int(0, s(y)) → cons(0, int(s(0), s(y)))
intlist(cons(x, nil)) → cons(s(x), nil)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INTLIST(cons(x, y)) → INTLIST(y)
INT(s(x), s(y)) → INTLIST(int(x, y))
INT(s(x), s(y)) → INT(x, y)
INT(0, s(y)) → INT(s(0), s(y))
The TRS R consists of the following rules:
intlist(nil) → nil
int(s(x), 0) → nil
int(x, x) → cons(x, nil)
intlist(cons(x, y)) → cons(s(x), intlist(y))
int(s(x), s(y)) → intlist(int(x, y))
int(0, s(y)) → cons(0, int(s(0), s(y)))
intlist(cons(x, nil)) → cons(s(x), nil)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INTLIST(cons(x, y)) → INTLIST(y)
The TRS R consists of the following rules:
intlist(nil) → nil
int(s(x), 0) → nil
int(x, x) → cons(x, nil)
intlist(cons(x, y)) → cons(s(x), intlist(y))
int(s(x), s(y)) → intlist(int(x, y))
int(0, s(y)) → cons(0, int(s(0), s(y)))
intlist(cons(x, nil)) → cons(s(x), nil)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
INTLIST(cons(x, y)) → INTLIST(y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
INTLIST(
x0,
x1) =
INTLIST(
x1)
Tags:
INTLIST has argument tags [0,0] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
INTLIST(
x1) =
INTLIST
cons(
x1,
x2) =
cons(
x1,
x2)
Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial
Status:
INTLIST: []
cons2: [1,2]
The following usable rules [FROCOS05] were oriented:
none
(7) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
intlist(nil) → nil
int(s(x), 0) → nil
int(x, x) → cons(x, nil)
intlist(cons(x, y)) → cons(s(x), intlist(y))
int(s(x), s(y)) → intlist(int(x, y))
int(0, s(y)) → cons(0, int(s(0), s(y)))
intlist(cons(x, nil)) → cons(s(x), nil)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(9) TRUE
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INT(0, s(y)) → INT(s(0), s(y))
INT(s(x), s(y)) → INT(x, y)
The TRS R consists of the following rules:
intlist(nil) → nil
int(s(x), 0) → nil
int(x, x) → cons(x, nil)
intlist(cons(x, y)) → cons(s(x), intlist(y))
int(s(x), s(y)) → intlist(int(x, y))
int(0, s(y)) → cons(0, int(s(0), s(y)))
intlist(cons(x, nil)) → cons(s(x), nil)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
INT(s(x), s(y)) → INT(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
INT(
x0,
x1,
x2) =
INT(
x2)
Tags:
INT has argument tags [1,1,1] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
INT(
x1,
x2) =
x2
0 =
0
s(
x1) =
s(
x1)
Lexicographic path order with status [LPO].
Quasi-Precedence:
0 > s1
Status:
0: []
s1: [1]
The following usable rules [FROCOS05] were oriented:
none
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INT(0, s(y)) → INT(s(0), s(y))
The TRS R consists of the following rules:
intlist(nil) → nil
int(s(x), 0) → nil
int(x, x) → cons(x, nil)
intlist(cons(x, y)) → cons(s(x), intlist(y))
int(s(x), s(y)) → intlist(int(x, y))
int(0, s(y)) → cons(0, int(s(0), s(y)))
intlist(cons(x, nil)) → cons(s(x), nil)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(14) TRUE