(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS_ACTIVE(s(x), s(y)) → MINUS_ACTIVE(x, y)
MARK(s(x)) → MARK(x)
MARK(minus(x, y)) → MINUS_ACTIVE(x, y)
MARK(ge(x, y)) → GE_ACTIVE(x, y)
GE_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)
MARK(div(x, y)) → DIV_ACTIVE(mark(x), y)
MARK(div(x, y)) → MARK(x)
MARK(if(x, y, z)) → IF_ACTIVE(mark(x), y, z)
MARK(if(x, y, z)) → MARK(x)
DIV_ACTIVE(s(x), s(y)) → IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
DIV_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)
IF_ACTIVE(true, x, y) → MARK(x)
IF_ACTIVE(false, x, y) → MARK(y)

The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GE_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)

The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


GE_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
GE_ACTIVE(x0, x1, x2)  =  GE_ACTIVE(x1)

Tags:
GE_ACTIVE has argument tags [1,0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
GE_ACTIVE(x1, x2)  =  x2
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS_ACTIVE(s(x), s(y)) → MINUS_ACTIVE(x, y)

The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS_ACTIVE(s(x), s(y)) → MINUS_ACTIVE(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MINUS_ACTIVE(x0, x1, x2)  =  MINUS_ACTIVE(x1)

Tags:
MINUS_ACTIVE has argument tags [1,0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MINUS_ACTIVE(x1, x2)  =  x2
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(div(x, y)) → DIV_ACTIVE(mark(x), y)
DIV_ACTIVE(s(x), s(y)) → IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
IF_ACTIVE(true, x, y) → MARK(x)
MARK(s(x)) → MARK(x)
MARK(div(x, y)) → MARK(x)
MARK(if(x, y, z)) → IF_ACTIVE(mark(x), y, z)
IF_ACTIVE(false, x, y) → MARK(y)
MARK(if(x, y, z)) → MARK(x)

The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


DIV_ACTIVE(s(x), s(y)) → IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
IF_ACTIVE(true, x, y) → MARK(x)
MARK(s(x)) → MARK(x)
MARK(div(x, y)) → MARK(x)
MARK(if(x, y, z)) → IF_ACTIVE(mark(x), y, z)
IF_ACTIVE(false, x, y) → MARK(y)
MARK(if(x, y, z)) → MARK(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)
DIV_ACTIVE(x0, x1, x2)  =  DIV_ACTIVE(x0, x1, x2)
IF_ACTIVE(x0, x1, x2, x3)  =  IF_ACTIVE(x0, x1, x2)

Tags:
MARK has argument tags [6,0] and root tag 0
DIV_ACTIVE has argument tags [0,12,9] and root tag 0
IF_ACTIVE has argument tags [8,10,0,6] and root tag 2

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  x1
div(x1, x2)  =  div(x1, x2)
DIV_ACTIVE(x1, x2)  =  DIV_ACTIVE(x1, x2)
mark(x1)  =  x1
s(x1)  =  s(x1)
IF_ACTIVE(x1, x2, x3)  =  IF_ACTIVE(x1, x3)
ge_active(x1, x2)  =  ge_active(x1, x2)
minus(x1, x2)  =  minus(x1)
0  =  0
true  =  true
if(x1, x2, x3)  =  if(x1, x2, x3)
false  =  false
minus_active(x1, x2)  =  minus_active(x1)
ge(x1, x2)  =  ge(x1, x2)
div_active(x1, x2)  =  div_active(x1, x2)
if_active(x1, x2, x3)  =  if_active(x1, x2, x3)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[div2, DIVACTIVE2, divactive2] > [s1, false] > [geactive2, true, ge2]
[div2, DIVACTIVE2, divactive2] > [s1, false] > [minus1, minusactive1] > 0
[div2, DIVACTIVE2, divactive2] > [s1, false] > [if3, ifactive3] > IFACTIVE2

Status:
div2: [2,1]
DIVACTIVE2: [2,1]
s1: [1]
IFACTIVE2: [1,2]
geactive2: [1,2]
minus1: [1]
0: []
true: []
if3: [3,1,2]
false: []
minusactive1: [1]
ge2: [1,2]
divactive2: [2,1]
ifactive3: [3,1,2]


The following usable rules [FROCOS05] were oriented:

mark(0) → 0
mark(s(x)) → s(mark(x))
mark(minus(x, y)) → minus_active(x, y)
mark(ge(x, y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
mark(if(x, y, z)) → if_active(mark(x), y, z)
if_active(false, x, y) → mark(y)
ge_active(x, 0) → true
ge_active(0, s(y)) → false
ge_active(s(x), s(y)) → ge_active(x, y)
ge_active(x, y) → ge(x, y)
div_active(0, s(y)) → 0
div_active(x, y) → div(x, y)
if_active(x, y, z) → if(x, y, z)
minus_active(0, y) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
minus_active(x, y) → minus(x, y)

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(div(x, y)) → DIV_ACTIVE(mark(x), y)

The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(19) TRUE