(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS_ACTIVE(s(x), s(y)) → MINUS_ACTIVE(x, y)
MARK(s(x)) → MARK(x)
MARK(minus(x, y)) → MINUS_ACTIVE(x, y)
MARK(ge(x, y)) → GE_ACTIVE(x, y)
GE_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)
MARK(div(x, y)) → DIV_ACTIVE(mark(x), y)
MARK(div(x, y)) → MARK(x)
MARK(if(x, y, z)) → IF_ACTIVE(mark(x), y, z)
MARK(if(x, y, z)) → MARK(x)
DIV_ACTIVE(s(x), s(y)) → IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
DIV_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)
IF_ACTIVE(true, x, y) → MARK(x)
IF_ACTIVE(false, x, y) → MARK(y)

The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GE_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)

The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


GE_ACTIVE(s(x), s(y)) → GE_ACTIVE(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(GE_ACTIVE(x1, x2)) = x2   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS_ACTIVE(s(x), s(y)) → MINUS_ACTIVE(x, y)

The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS_ACTIVE(s(x), s(y)) → MINUS_ACTIVE(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(MINUS_ACTIVE(x1, x2)) = x2   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(div(x, y)) → DIV_ACTIVE(mark(x), y)
DIV_ACTIVE(s(x), s(y)) → IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
IF_ACTIVE(true, x, y) → MARK(x)
MARK(s(x)) → MARK(x)
MARK(div(x, y)) → MARK(x)
MARK(if(x, y, z)) → IF_ACTIVE(mark(x), y, z)
IF_ACTIVE(false, x, y) → MARK(y)
MARK(if(x, y, z)) → MARK(x)

The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(if(x, y, z)) → IF_ACTIVE(mark(x), y, z)
MARK(if(x, y, z)) → MARK(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIV_ACTIVE(x1, x2)) = 0   
POL(IF_ACTIVE(x1, x2, x3)) = x2 + x3   
POL(MARK(x1)) = x1   
POL(div(x1, x2)) = x1   
POL(div_active(x1, x2)) = 0   
POL(false) = 0   
POL(ge(x1, x2)) = 0   
POL(ge_active(x1, x2)) = 0   
POL(if(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(if_active(x1, x2, x3)) = 0   
POL(mark(x1)) = 0   
POL(minus(x1, x2)) = 0   
POL(minus_active(x1, x2)) = 0   
POL(s(x1)) = x1   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(div(x, y)) → DIV_ACTIVE(mark(x), y)
DIV_ACTIVE(s(x), s(y)) → IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
IF_ACTIVE(true, x, y) → MARK(x)
MARK(s(x)) → MARK(x)
MARK(div(x, y)) → MARK(x)
IF_ACTIVE(false, x, y) → MARK(y)

The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(x)) → MARK(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIV_ACTIVE(x1, x2)) = x1   
POL(IF_ACTIVE(x1, x2, x3)) = x2 + x3   
POL(MARK(x1)) = x1   
POL(div(x1, x2)) = x1   
POL(div_active(x1, x2)) = x1   
POL(false) = 0   
POL(ge(x1, x2)) = 0   
POL(ge_active(x1, x2)) = 0   
POL(if(x1, x2, x3)) = x2 + x3   
POL(if_active(x1, x2, x3)) = x2 + x3   
POL(mark(x1)) = x1   
POL(minus(x1, x2)) = 0   
POL(minus_active(x1, x2)) = 0   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented:

mark(0) → 0
mark(s(x)) → s(mark(x))
mark(minus(x, y)) → minus_active(x, y)
mark(ge(x, y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
mark(if(x, y, z)) → if_active(mark(x), y, z)
if_active(false, x, y) → mark(y)
ge_active(x, 0) → true
ge_active(0, s(y)) → false
ge_active(s(x), s(y)) → ge_active(x, y)
ge_active(x, y) → ge(x, y)
div_active(0, s(y)) → 0
div_active(x, y) → div(x, y)
if_active(x, y, z) → if(x, y, z)
minus_active(0, y) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
minus_active(x, y) → minus(x, y)

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(div(x, y)) → DIV_ACTIVE(mark(x), y)
DIV_ACTIVE(s(x), s(y)) → IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
IF_ACTIVE(true, x, y) → MARK(x)
MARK(div(x, y)) → MARK(x)
IF_ACTIVE(false, x, y) → MARK(y)

The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(div(x, y)) → DIV_ACTIVE(mark(x), y)
MARK(div(x, y)) → MARK(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIV_ACTIVE(x1, x2)) = 0   
POL(IF_ACTIVE(x1, x2, x3)) = x2 + x3   
POL(MARK(x1)) = x1   
POL(div(x1, x2)) = 1 + x1   
POL(div_active(x1, x2)) = 0   
POL(false) = 0   
POL(ge(x1, x2)) = 0   
POL(ge_active(x1, x2)) = 0   
POL(if(x1, x2, x3)) = 0   
POL(if_active(x1, x2, x3)) = 0   
POL(mark(x1)) = 0   
POL(minus(x1, x2)) = 0   
POL(minus_active(x1, x2)) = 0   
POL(s(x1)) = 0   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV_ACTIVE(s(x), s(y)) → IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
IF_ACTIVE(true, x, y) → MARK(x)
IF_ACTIVE(false, x, y) → MARK(y)

The TRS R consists of the following rules:

minus_active(0, y) → 0
mark(0) → 0
minus_active(s(x), s(y)) → minus_active(x, y)
mark(s(x)) → s(mark(x))
ge_active(x, 0) → true
mark(minus(x, y)) → minus_active(x, y)
ge_active(0, s(y)) → false
mark(ge(x, y)) → ge_active(x, y)
ge_active(s(x), s(y)) → ge_active(x, y)
mark(div(x, y)) → div_active(mark(x), y)
div_active(0, s(y)) → 0
mark(if(x, y, z)) → if_active(mark(x), y, z)
div_active(s(x), s(y)) → if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0)
if_active(true, x, y) → mark(x)
minus_active(x, y) → minus(x, y)
if_active(false, x, y) → mark(y)
ge_active(x, y) → ge(x, y)
if_active(x, y, z) → if(x, y, z)
div_active(x, y) → div(x, y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(23) TRUE