0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 QDPOrderProof (⇔)
↳4 QDP
↳5 QDPOrderProof (⇔)
↳6 QDP
↳7 DependencyGraphProof (⇔)
↳8 TRUE
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
DIV(x, y) → QUOT(x, y, y)
QUOT(s(x), s(y), z) → QUOT(x, y, z)
QUOT(x, 0, s(z)) → DIV(x, s(z))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT(s(x), s(y), z) → QUOT(x, y, z)
POL(0) = 0
POL(DIV(x1, x2)) = x1
POL(QUOT(x1, x2, x3)) = x1
POL(s(x1)) = 1 + x1
DIV(x, y) → QUOT(x, y, y)
QUOT(x, 0, s(z)) → DIV(x, s(z))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT(x, 0, s(z)) → DIV(x, s(z))
POL(0) = 1
POL(DIV(x1, x2)) = x2
POL(QUOT(x1, x2, x3)) = x2
POL(s(x1)) = 0
DIV(x, y) → QUOT(x, y, y)
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))