0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPSizeChangeProof (⇔)
↳7 TRUE
↳8 QDP
↳9 QDPSizeChangeProof (⇔)
↳10 TRUE
↳11 QDP
↳12 QDPSizeChangeProof (⇔)
↳13 TRUE
↳14 QDP
↳15 QDPSizeChangeProof (⇔)
↳16 TRUE
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(s(0)) → 0
log(s(s(x))) → s(log(s(quot(x, s(s(0))))))
LE(s(x), s(y)) → LE(x, y)
MINUS(s(x), y) → IF_MINUS(le(s(x), y), s(x), y)
MINUS(s(x), y) → LE(s(x), y)
IF_MINUS(false, s(x), y) → MINUS(x, y)
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) → MINUS(x, y)
LOG(s(s(x))) → LOG(s(quot(x, s(s(0)))))
LOG(s(s(x))) → QUOT(x, s(s(0)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(s(0)) → 0
log(s(s(x))) → s(log(s(quot(x, s(s(0))))))
LE(s(x), s(y)) → LE(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(s(0)) → 0
log(s(s(x))) → s(log(s(quot(x, s(s(0))))))
Order:Homeomorphic Embedding Order
AFS:
s(x1) = s(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
MINUS(s(x), y) → IF_MINUS(le(s(x), y), s(x), y)
IF_MINUS(false, s(x), y) → MINUS(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(s(0)) → 0
log(s(s(x))) → s(log(s(quot(x, s(s(0))))))
Order:Homeomorphic Embedding Order
AFS:
false = false
s(x1) = s(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(s(0)) → 0
log(s(s(x))) → s(log(s(quot(x, s(s(0))))))
Order:Combined order from the following AFS and order.
minus(x1, x2) = x1
0 = 0
s(x1) = s(x1)
if_minus(x1, x2, x3) = x2
le(x1, x2) = le(x1, x2)
false = false
true = true
Lexicographic path order with status [LPO].
Quasi-Precedence:
false > [0, s1] > le2 > true
0: []
s1: [1]
le2: [1,2]
false: []
true: []
AFS:
minus(x1, x2) = x1
0 = 0
s(x1) = s(x1)
if_minus(x1, x2, x3) = x2
le(x1, x2) = le(x1, x2)
false = false
true = true
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(false, s(x), y) → s(minus(x, y))
if_minus(true, s(x), y) → 0
LOG(s(s(x))) → LOG(s(quot(x, s(s(0)))))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(s(0)) → 0
log(s(s(x))) → s(log(s(quot(x, s(s(0))))))
Order:Combined order from the following AFS and order.
quot(x1, x2) = x1
s(x1) = s(x1)
minus(x1, x2) = x1
0 = 0
if_minus(x1, x2, x3) = x2
le(x1, x2) = le(x1, x2)
false = false
true = true
Lexicographic path order with status [LPO].
Quasi-Precedence:
s1 > 0 > false > true
s1 > le2 > false > true
s1: [1]
0: []
le2: [2,1]
false: []
true: []
AFS:
quot(x1, x2) = x1
s(x1) = s(x1)
minus(x1, x2) = x1
0 = 0
if_minus(x1, x2, x3) = x2
le(x1, x2) = le(x1, x2)
false = false
true = true
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
quot(0, s(y)) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
minus(0, y) → 0
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))