(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

half(0) → 0
half(s(s(x))) → s(half(x))
log(s(0)) → 0
log(s(s(x))) → s(log(s(half(x))))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HALF(s(s(x))) → HALF(x)
LOG(s(s(x))) → LOG(s(half(x)))
LOG(s(s(x))) → HALF(x)

The TRS R consists of the following rules:

half(0) → 0
half(s(s(x))) → s(half(x))
log(s(0)) → 0
log(s(s(x))) → s(log(s(half(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HALF(s(s(x))) → HALF(x)

The TRS R consists of the following rules:

half(0) → 0
half(s(s(x))) → s(half(x))
log(s(0)) → 0
log(s(s(x))) → s(log(s(half(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HALF(s(s(x))) → HALF(x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
HALF(x0, x1)  =  HALF(x0, x1)

Tags:
HALF has argument tags [1,0] and root tag 0

Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
HALF(x1)  =  HALF
s(x1)  =  s(x1)

Homeomorphic Embedding Order
The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

half(0) → 0
half(s(s(x))) → s(half(x))
log(s(0)) → 0
log(s(s(x))) → s(log(s(half(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOG(s(s(x))) → LOG(s(half(x)))

The TRS R consists of the following rules:

half(0) → 0
half(s(s(x))) → s(half(x))
log(s(0)) → 0
log(s(s(x))) → s(log(s(half(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LOG(s(s(x))) → LOG(s(half(x)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
LOG(x0, x1)  =  LOG(x0, x1)

Tags:
LOG has argument tags [1,0] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
LOG(x1)  =  LOG
s(x1)  =  s(x1)
half(x1)  =  x1
0  =  0

Homeomorphic Embedding Order
The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

half(0) → 0
half(s(s(x))) → s(half(x))
log(s(0)) → 0
log(s(s(x))) → s(log(s(half(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE