(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

g(c(x, s(y))) → g(c(s(x), y))
f(c(s(x), y)) → f(c(x, s(y)))
f(f(x)) → f(d(f(x)))
f(x) → x

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(c(x, s(y))) → G(c(s(x), y))
F(c(s(x), y)) → F(c(x, s(y)))
F(f(x)) → F(d(f(x)))

The TRS R consists of the following rules:

g(c(x, s(y))) → g(c(s(x), y))
f(c(s(x), y)) → f(c(x, s(y)))
f(f(x)) → f(d(f(x)))
f(x) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(c(s(x), y)) → F(c(x, s(y)))

The TRS R consists of the following rules:

g(c(x, s(y))) → g(c(s(x), y))
f(c(s(x), y)) → f(c(x, s(y)))
f(f(x)) → f(d(f(x)))
f(x) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
s(x1)  =  s(x1)
c(x1, x2)  =  x1

From the DPs we obtained the following set of size-change graphs:

  • F(c(s(x), y)) → F(c(x, s(y))) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(7) TRUE

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(c(x, s(y))) → G(c(s(x), y))

The TRS R consists of the following rules:

g(c(x, s(y))) → g(c(s(x), y))
f(c(s(x), y)) → f(c(x, s(y)))
f(f(x)) → f(d(f(x)))
f(x) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
s(x1)  =  s(x1)
c(x1, x2)  =  x2

From the DPs we obtained the following set of size-change graphs:

  • G(c(x, s(y))) → G(c(s(x), y)) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(10) TRUE