(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) → MINUS(x, y)
LE(s(x), s(y)) → LE(x, y)
APP(add(n, x), y) → APP(x, y)
LOW(n, add(m, x)) → IF_LOW(le(m, n), n, add(m, x))
LOW(n, add(m, x)) → LE(m, n)
IF_LOW(true, n, add(m, x)) → LOW(n, x)
IF_LOW(false, n, add(m, x)) → LOW(n, x)
HIGH(n, add(m, x)) → IF_HIGH(le(m, n), n, add(m, x))
HIGH(n, add(m, x)) → LE(m, n)
IF_HIGH(true, n, add(m, x)) → HIGH(n, x)
IF_HIGH(false, n, add(m, x)) → HIGH(n, x)
QUICKSORT(add(n, x)) → APP(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
QUICKSORT(add(n, x)) → QUICKSORT(low(n, x))
QUICKSORT(add(n, x)) → LOW(n, x)
QUICKSORT(add(n, x)) → QUICKSORT(high(n, x))
QUICKSORT(add(n, x)) → HIGH(n, x)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 6 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP(add(n, x), y) → APP(x, y)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


APP(add(n, x), y) → APP(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[APP2, add2]

Status:
APP2: [2,1]
add2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LE(s(x), s(y)) → LE(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LE(x1, x2)  =  LE(x2)
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
LE1: [1]
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HIGH(n, add(m, x)) → IF_HIGH(le(m, n), n, add(m, x))
IF_HIGH(true, n, add(m, x)) → HIGH(n, x)
IF_HIGH(false, n, add(m, x)) → HIGH(n, x)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HIGH(n, add(m, x)) → IF_HIGH(le(m, n), n, add(m, x))
IF_HIGH(true, n, add(m, x)) → HIGH(n, x)
IF_HIGH(false, n, add(m, x)) → HIGH(n, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HIGH(x1, x2)  =  HIGH(x2)
add(x1, x2)  =  add(x1, x2)
IF_HIGH(x1, x2, x3)  =  IF_HIGH(x3)
le(x1, x2)  =  le
true  =  true
false  =  false
0  =  0
s(x1)  =  s

Lexicographic path order with status [LPO].
Quasi-Precedence:
[HIGH1, add2] > IFHIGH1 > true
[HIGH1, add2] > le > true
0 > false > true
s > true

Status:
HIGH1: [1]
add2: [2,1]
IFHIGH1: [1]
le: []
true: []
false: []
0: []
s: []


The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOW(n, add(m, x)) → IF_LOW(le(m, n), n, add(m, x))
IF_LOW(true, n, add(m, x)) → LOW(n, x)
IF_LOW(false, n, add(m, x)) → LOW(n, x)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IF_LOW(true, n, add(m, x)) → LOW(n, x)
IF_LOW(false, n, add(m, x)) → LOW(n, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LOW(x1, x2)  =  x2
add(x1, x2)  =  add(x2)
IF_LOW(x1, x2, x3)  =  x3
le(x1, x2)  =  le(x1)
true  =  true
false  =  false
0  =  0
s(x1)  =  s

Lexicographic path order with status [LPO].
Quasi-Precedence:
s > le1 > true
s > false

Status:
add1: [1]
le1: [1]
true: []
false: []
0: []
s: []


The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOW(n, add(m, x)) → IF_LOW(le(m, n), n, add(m, x))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(24) TRUE

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUICKSORT(add(n, x)) → QUICKSORT(high(n, x))
QUICKSORT(add(n, x)) → QUICKSORT(low(n, x))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


QUICKSORT(add(n, x)) → QUICKSORT(low(n, x))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
QUICKSORT(x1)  =  QUICKSORT(x1)
add(x1, x2)  =  add(x2)
high(x1, x2)  =  high(x2)
low(x1, x2)  =  x2
nil  =  nil
if_high(x1, x2, x3)  =  if_high(x3)
le(x1, x2)  =  x2
true  =  true
if_low(x1, x2, x3)  =  x3
false  =  false
0  =  0
s(x1)  =  s

Lexicographic path order with status [LPO].
Quasi-Precedence:
QUICKSORT1 > [add1, high1, ifhigh1] > nil
0 > true
0 > false

Status:
QUICKSORT1: [1]
add1: [1]
high1: [1]
nil: []
ifhigh1: [1]
true: []
false: []
0: []
s: []


The following usable rules [FROCOS05] were oriented:

high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(false, n, add(m, x)) → low(n, x)
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_high(false, n, add(m, x)) → add(m, high(n, x))

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUICKSORT(add(n, x)) → QUICKSORT(high(n, x))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


QUICKSORT(add(n, x)) → QUICKSORT(high(n, x))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
QUICKSORT(x1)  =  QUICKSORT(x1)
add(x1, x2)  =  add(x1, x2)
high(x1, x2)  =  x2
nil  =  nil
if_high(x1, x2, x3)  =  x3
le(x1, x2)  =  le
true  =  true
false  =  false
0  =  0
s(x1)  =  s

Lexicographic path order with status [LPO].
Quasi-Precedence:
QUICKSORT1 > nil
0 > [add2, false] > [le, true] > nil
s > nil

Status:
QUICKSORT1: [1]
add2: [1,2]
nil: []
le: []
true: []
false: []
0: []
s: []


The following usable rules [FROCOS05] were oriented:

high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))

(29) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(31) TRUE

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(s(x), s(y)) → MINUS(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MINUS(x1, x2)  =  MINUS(x2)
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MINUS1: [1]
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) TRUE

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
QUOT(x1, x2)  =  QUOT(x1, x2)
s(x1)  =  s(x1)
minus(x1, x2)  =  minus(x1)
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
s1 > QUOT2 > minus1
0 > minus1

Status:
QUOT2: [2,1]
s1: [1]
minus1: [1]
0: []


The following usable rules [FROCOS05] were oriented:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

(39) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(41) TRUE