(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)
MINUS(s(x), s(y)) → MINUS(x, y)
MOD(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))
MOD(s(x), s(y)) → LE(y, x)
IF_MOD(true, s(x), s(y)) → MOD(minus(x, y), s(y))
IF_MOD(true, s(x), s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 2 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(s(x), s(y)) → MINUS(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[MINUS2, s1]

Status:
MINUS2: [1,2]
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LE(s(x), s(y)) → LE(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[LE2, s1]

Status:
LE2: [1,2]
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MOD(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))
IF_MOD(true, s(x), s(y)) → MOD(minus(x, y), s(y))

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MOD(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))
IF_MOD(true, s(x), s(y)) → MOD(minus(x, y), s(y))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MOD(x1, x2)  =  MOD(x1)
s(x1)  =  s(x1)
IF_MOD(x1, x2, x3)  =  IF_MOD(x1, x2)
le(x1, x2)  =  le
true  =  true
minus(x1, x2)  =  x1
0  =  0
false  =  false

Recursive path order with status [RPO].
Quasi-Precedence:
[MOD1, s1, le] > IFMOD2
[MOD1, s1, le] > true
[MOD1, s1, le] > [0, false]

Status:
MOD1: multiset
s1: multiset
IFMOD2: [1,2]
le: multiset
true: multiset
0: multiset
false: multiset


The following usable rules [FROCOS05] were oriented:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE