(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(x, c(y)) → f(x, s(f(y, y)))
f(s(x), y) → f(x, s(c(y)))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(x, c(y)) → F(x, s(f(y, y)))
F(x, c(y)) → F(y, y)
F(s(x), y) → F(x, s(c(y)))
The TRS R consists of the following rules:
f(x, c(y)) → f(x, s(f(y, y)))
f(s(x), y) → f(x, s(c(y)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(x), y) → F(x, s(c(y)))
The TRS R consists of the following rules:
f(x, c(y)) → f(x, s(f(y, y)))
f(s(x), y) → f(x, s(c(y)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPSizeChangeProof (EQUIVALENT transformation)
We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.
Order:Homeomorphic Embedding Order
AFS:
c(x1) = c
s(x1) = s(x1)
From the DPs we obtained the following set of size-change graphs:
- F(s(x), y) → F(x, s(c(y))) (allowed arguments on rhs = {1, 2})
The graph contains the following edges 1 > 1
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
(7) TRUE
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(x, c(y)) → F(y, y)
The TRS R consists of the following rules:
f(x, c(y)) → f(x, s(f(y, y)))
f(s(x), y) → f(x, s(c(y)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) QDPSizeChangeProof (EQUIVALENT transformation)
We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.
Order:Homeomorphic Embedding Order
AFS:
c(x1) = c(x1)
From the DPs we obtained the following set of size-change graphs:
- F(x, c(y)) → F(y, y) (allowed arguments on rhs = {1, 2})
The graph contains the following edges 2 > 1, 2 > 2
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
(10) TRUE