(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

rev(nil) → nil
rev(cons(x, l)) → cons(rev1(x, l), rev2(x, l))
rev1(0, nil) → 0
rev1(s(x), nil) → s(x)
rev1(x, cons(y, l)) → rev1(y, l)
rev2(x, nil) → nil
rev2(x, cons(y, l)) → rev(cons(x, rev2(y, l)))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REV(cons(x, l)) → REV1(x, l)
REV(cons(x, l)) → REV2(x, l)
REV1(x, cons(y, l)) → REV1(y, l)
REV2(x, cons(y, l)) → REV(cons(x, rev2(y, l)))
REV2(x, cons(y, l)) → REV2(y, l)

The TRS R consists of the following rules:

rev(nil) → nil
rev(cons(x, l)) → cons(rev1(x, l), rev2(x, l))
rev1(0, nil) → 0
rev1(s(x), nil) → s(x)
rev1(x, cons(y, l)) → rev1(y, l)
rev2(x, nil) → nil
rev2(x, cons(y, l)) → rev(cons(x, rev2(y, l)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REV1(x, cons(y, l)) → REV1(y, l)

The TRS R consists of the following rules:

rev(nil) → nil
rev(cons(x, l)) → cons(rev1(x, l), rev2(x, l))
rev1(0, nil) → 0
rev1(s(x), nil) → s(x)
rev1(x, cons(y, l)) → rev1(y, l)
rev2(x, nil) → nil
rev2(x, cons(y, l)) → rev(cons(x, rev2(y, l)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
cons(x1, x2)  =  cons(x2)

From the DPs we obtained the following set of size-change graphs:

  • REV1(x, cons(y, l)) → REV1(y, l) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 2 > 2

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(7) TRUE

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REV(cons(x, l)) → REV2(x, l)
REV2(x, cons(y, l)) → REV(cons(x, rev2(y, l)))
REV2(x, cons(y, l)) → REV2(y, l)

The TRS R consists of the following rules:

rev(nil) → nil
rev(cons(x, l)) → cons(rev1(x, l), rev2(x, l))
rev1(0, nil) → 0
rev1(s(x), nil) → s(x)
rev1(x, cons(y, l)) → rev1(y, l)
rev2(x, nil) → nil
rev2(x, cons(y, l)) → rev(cons(x, rev2(y, l)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Polynomial interpretation [POLO]:


POL(cons(x1, x2)) = 1 + x2   
POL(nil) = 0   
POL(rev(x1)) = x1   
POL(rev1(x1, x2)) = 0   
POL(rev2(x1, x2)) = x2   

From the DPs we obtained the following set of size-change graphs:

  • REV2(x, cons(y, l)) → REV(cons(x, rev2(y, l))) (allowed arguments on rhs = {1})
    The graph contains the following edges 2 >= 1

  • REV2(x, cons(y, l)) → REV2(y, l) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 2 > 2

  • REV(cons(x, l)) → REV2(x, l) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 2

We oriented the following set of usable rules [AAECC05,FROCOS05].


rev2(x, nil) → nil
rev2(x, cons(y, l)) → rev(cons(x, rev2(y, l)))
rev(cons(x, l)) → cons(rev1(x, l), rev2(x, l))

(10) TRUE