(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

not(true) → false
not(false) → true
evenodd(x, 0) → not(evenodd(x, s(0)))
evenodd(0, s(0)) → false
evenodd(s(x), s(0)) → evenodd(x, 0)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EVENODD(x, 0) → NOT(evenodd(x, s(0)))
EVENODD(x, 0) → EVENODD(x, s(0))
EVENODD(s(x), s(0)) → EVENODD(x, 0)

The TRS R consists of the following rules:

not(true) → false
not(false) → true
evenodd(x, 0) → not(evenodd(x, s(0)))
evenodd(0, s(0)) → false
evenodd(s(x), s(0)) → evenodd(x, 0)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EVENODD(s(x), s(0)) → EVENODD(x, 0)
EVENODD(x, 0) → EVENODD(x, s(0))

The TRS R consists of the following rules:

not(true) → false
not(false) → true
evenodd(x, 0) → not(evenodd(x, s(0)))
evenodd(0, s(0)) → false
evenodd(s(x), s(0)) → evenodd(x, 0)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
0  =  0
s(x1)  =  s(x1)

From the DPs we obtained the following set of size-change graphs:

  • EVENODD(x, 0) → EVENODD(x, s(0)) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 >= 1

  • EVENODD(s(x), s(0)) → EVENODD(x, 0) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 > 2

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(6) TRUE