(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
times(x, plus(y, 1)) → plus(times(x, plus(y, times(1, 0))), x)
times(x, 1) → x
plus(x, 0) → x
times(x, 0) → 0
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TIMES(x, plus(y, 1)) → PLUS(times(x, plus(y, times(1, 0))), x)
TIMES(x, plus(y, 1)) → TIMES(x, plus(y, times(1, 0)))
TIMES(x, plus(y, 1)) → PLUS(y, times(1, 0))
TIMES(x, plus(y, 1)) → TIMES(1, 0)
The TRS R consists of the following rules:
times(x, plus(y, 1)) → plus(times(x, plus(y, times(1, 0))), x)
times(x, 1) → x
plus(x, 0) → x
times(x, 0) → 0
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TIMES(x, plus(y, 1)) → TIMES(x, plus(y, times(1, 0)))
The TRS R consists of the following rules:
times(x, plus(y, 1)) → plus(times(x, plus(y, times(1, 0))), x)
times(x, 1) → x
plus(x, 0) → x
times(x, 0) → 0
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
TIMES(x, plus(y, 1)) → TIMES(x, plus(y, times(1, 0)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
TIMES(
x0,
x1,
x2) =
TIMES(
x0)
Tags:
TIMES has argument tags [0,0,2] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(1) = 1
POL(TIMES(x1, x2)) = x2
POL(plus(x1, x2)) = x1 + x2
POL(times(x1, x2)) = 0
The following usable rules [FROCOS05] were oriented:
times(x, 0) → 0
plus(x, 0) → x
(6) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
times(x, plus(y, 1)) → plus(times(x, plus(y, times(1, 0))), x)
times(x, 1) → x
plus(x, 0) → x
times(x, 0) → 0
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(8) TRUE