0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPSizeChangeProof (⇔)
↳7 TRUE
↳8 QDP
↳9 QDPSizeChangeProof (⇔)
↳10 TRUE
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
MINUS(x, s(y)) → PRED(minus(x, y))
MINUS(x, s(y)) → MINUS(x, y)
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) → MINUS(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
MINUS(x, s(y)) → MINUS(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
Order:Homeomorphic Embedding Order
AFS:
s(x1) = s(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
Order:Combined order from the following AFS and order.
minus(x1, x2) = x1
0 = 0
s(x1) = s(x1)
pred(x1) = x1
Recursive path order with status [RPO].
Quasi-Precedence:
trivial
0: multiset
s1: multiset
AFS:
minus(x1, x2) = x1
0 = 0
s(x1) = s(x1)
pred(x1) = x1
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
pred(s(x)) → x