(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TIMES(x, s(y)) → PLUS(times(x, y), x)
TIMES(x, s(y)) → TIMES(x, y)
PLUS(x, s(y)) → PLUS(x, y)
PLUS(s(x), y) → PLUS(x, y)
The TRS R consists of the following rules:
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(x), y) → PLUS(x, y)
PLUS(x, s(y)) → PLUS(x, y)
The TRS R consists of the following rules:
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
PLUS(s(x), y) → PLUS(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
PLUS(
x0,
x1,
x2) =
PLUS(
x1)
Tags:
PLUS has argument tags [0,2,2] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
PLUS(
x1,
x2) =
PLUS
s(
x1) =
s(
x1)
Recursive path order with status [RPO].
Quasi-Precedence:
[PLUS, s1]
Status:
PLUS: multiset
s1: multiset
The following usable rules [FROCOS05] were oriented:
none
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(x, s(y)) → PLUS(x, y)
The TRS R consists of the following rules:
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
PLUS(x, s(y)) → PLUS(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
PLUS(
x0,
x1,
x2) =
PLUS(
x2)
Tags:
PLUS has argument tags [0,0,1] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
PLUS(
x1,
x2) =
x1
s(
x1) =
s(
x1)
Recursive path order with status [RPO].
Quasi-Precedence:
trivial
Status:
s1: [1]
The following usable rules [FROCOS05] were oriented:
none
(9) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(11) TRUE
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TIMES(x, s(y)) → TIMES(x, y)
The TRS R consists of the following rules:
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
TIMES(x, s(y)) → TIMES(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
TIMES(
x0,
x1,
x2) =
TIMES(
x2)
Tags:
TIMES has argument tags [0,0,1] and root tag 0
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
TIMES(
x1,
x2) =
x1
s(
x1) =
s(
x1)
Recursive path order with status [RPO].
Quasi-Precedence:
trivial
Status:
s1: [1]
The following usable rules [FROCOS05] were oriented:
none
(14) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(16) TRUE