O1(0) -> 0
+2(0, x) -> x
+2(x, 0) -> x
+2(O1(x), O1(y)) -> O1(+2(x, y))
+2(O1(x), I1(y)) -> I1(+2(x, y))
+2(I1(x), O1(y)) -> I1(+2(x, y))
+2(I1(x), I1(y)) -> O1(+2(+2(x, y), I1(0)))
*2(0, x) -> 0
*2(x, 0) -> 0
*2(O1(x), y) -> O1(*2(x, y))
*2(I1(x), y) -> +2(O1(*2(x, y)), y)
-2(x, 0) -> x
-2(0, x) -> 0
-2(O1(x), O1(y)) -> O1(-2(x, y))
-2(O1(x), I1(y)) -> I1(-2(-2(x, y), I1(1)))
-2(I1(x), O1(y)) -> I1(-2(x, y))
-2(I1(x), I1(y)) -> O1(-2(x, y))
↳ QTRS
↳ DependencyPairsProof
O1(0) -> 0
+2(0, x) -> x
+2(x, 0) -> x
+2(O1(x), O1(y)) -> O1(+2(x, y))
+2(O1(x), I1(y)) -> I1(+2(x, y))
+2(I1(x), O1(y)) -> I1(+2(x, y))
+2(I1(x), I1(y)) -> O1(+2(+2(x, y), I1(0)))
*2(0, x) -> 0
*2(x, 0) -> 0
*2(O1(x), y) -> O1(*2(x, y))
*2(I1(x), y) -> +2(O1(*2(x, y)), y)
-2(x, 0) -> x
-2(0, x) -> 0
-2(O1(x), O1(y)) -> O1(-2(x, y))
-2(O1(x), I1(y)) -> I1(-2(-2(x, y), I1(1)))
-2(I1(x), O1(y)) -> I1(-2(x, y))
-2(I1(x), I1(y)) -> O1(-2(x, y))
-12(I1(x), I1(y)) -> O11(-2(x, y))
+12(O1(x), O1(y)) -> O11(+2(x, y))
+12(O1(x), I1(y)) -> +12(x, y)
+12(I1(x), O1(y)) -> +12(x, y)
-12(O1(x), I1(y)) -> -12(-2(x, y), I1(1))
+12(I1(x), I1(y)) -> +12(x, y)
*12(O1(x), y) -> *12(x, y)
-12(O1(x), O1(y)) -> O11(-2(x, y))
-12(I1(x), I1(y)) -> -12(x, y)
*12(I1(x), y) -> *12(x, y)
-12(I1(x), O1(y)) -> -12(x, y)
-12(O1(x), I1(y)) -> -12(x, y)
+12(I1(x), I1(y)) -> O11(+2(+2(x, y), I1(0)))
-12(O1(x), O1(y)) -> -12(x, y)
*12(I1(x), y) -> +12(O1(*2(x, y)), y)
+12(I1(x), I1(y)) -> +12(+2(x, y), I1(0))
+12(O1(x), O1(y)) -> +12(x, y)
*12(I1(x), y) -> O11(*2(x, y))
*12(O1(x), y) -> O11(*2(x, y))
O1(0) -> 0
+2(0, x) -> x
+2(x, 0) -> x
+2(O1(x), O1(y)) -> O1(+2(x, y))
+2(O1(x), I1(y)) -> I1(+2(x, y))
+2(I1(x), O1(y)) -> I1(+2(x, y))
+2(I1(x), I1(y)) -> O1(+2(+2(x, y), I1(0)))
*2(0, x) -> 0
*2(x, 0) -> 0
*2(O1(x), y) -> O1(*2(x, y))
*2(I1(x), y) -> +2(O1(*2(x, y)), y)
-2(x, 0) -> x
-2(0, x) -> 0
-2(O1(x), O1(y)) -> O1(-2(x, y))
-2(O1(x), I1(y)) -> I1(-2(-2(x, y), I1(1)))
-2(I1(x), O1(y)) -> I1(-2(x, y))
-2(I1(x), I1(y)) -> O1(-2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
-12(I1(x), I1(y)) -> O11(-2(x, y))
+12(O1(x), O1(y)) -> O11(+2(x, y))
+12(O1(x), I1(y)) -> +12(x, y)
+12(I1(x), O1(y)) -> +12(x, y)
-12(O1(x), I1(y)) -> -12(-2(x, y), I1(1))
+12(I1(x), I1(y)) -> +12(x, y)
*12(O1(x), y) -> *12(x, y)
-12(O1(x), O1(y)) -> O11(-2(x, y))
-12(I1(x), I1(y)) -> -12(x, y)
*12(I1(x), y) -> *12(x, y)
-12(I1(x), O1(y)) -> -12(x, y)
-12(O1(x), I1(y)) -> -12(x, y)
+12(I1(x), I1(y)) -> O11(+2(+2(x, y), I1(0)))
-12(O1(x), O1(y)) -> -12(x, y)
*12(I1(x), y) -> +12(O1(*2(x, y)), y)
+12(I1(x), I1(y)) -> +12(+2(x, y), I1(0))
+12(O1(x), O1(y)) -> +12(x, y)
*12(I1(x), y) -> O11(*2(x, y))
*12(O1(x), y) -> O11(*2(x, y))
O1(0) -> 0
+2(0, x) -> x
+2(x, 0) -> x
+2(O1(x), O1(y)) -> O1(+2(x, y))
+2(O1(x), I1(y)) -> I1(+2(x, y))
+2(I1(x), O1(y)) -> I1(+2(x, y))
+2(I1(x), I1(y)) -> O1(+2(+2(x, y), I1(0)))
*2(0, x) -> 0
*2(x, 0) -> 0
*2(O1(x), y) -> O1(*2(x, y))
*2(I1(x), y) -> +2(O1(*2(x, y)), y)
-2(x, 0) -> x
-2(0, x) -> 0
-2(O1(x), O1(y)) -> O1(-2(x, y))
-2(O1(x), I1(y)) -> I1(-2(-2(x, y), I1(1)))
-2(I1(x), O1(y)) -> I1(-2(x, y))
-2(I1(x), I1(y)) -> O1(-2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
-12(I1(x), I1(y)) -> -12(x, y)
-12(I1(x), O1(y)) -> -12(x, y)
-12(O1(x), I1(y)) -> -12(x, y)
-12(O1(x), O1(y)) -> -12(x, y)
-12(O1(x), I1(y)) -> -12(-2(x, y), I1(1))
O1(0) -> 0
+2(0, x) -> x
+2(x, 0) -> x
+2(O1(x), O1(y)) -> O1(+2(x, y))
+2(O1(x), I1(y)) -> I1(+2(x, y))
+2(I1(x), O1(y)) -> I1(+2(x, y))
+2(I1(x), I1(y)) -> O1(+2(+2(x, y), I1(0)))
*2(0, x) -> 0
*2(x, 0) -> 0
*2(O1(x), y) -> O1(*2(x, y))
*2(I1(x), y) -> +2(O1(*2(x, y)), y)
-2(x, 0) -> x
-2(0, x) -> 0
-2(O1(x), O1(y)) -> O1(-2(x, y))
-2(O1(x), I1(y)) -> I1(-2(-2(x, y), I1(1)))
-2(I1(x), O1(y)) -> I1(-2(x, y))
-2(I1(x), I1(y)) -> O1(-2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
-12(I1(x), O1(y)) -> -12(x, y)
-12(O1(x), O1(y)) -> -12(x, y)
Used ordering: Polynomial interpretation [21]:
-12(I1(x), I1(y)) -> -12(x, y)
-12(O1(x), I1(y)) -> -12(x, y)
-12(O1(x), I1(y)) -> -12(-2(x, y), I1(1))
POL(-2(x1, x2)) = 0
POL(-12(x1, x2)) = x2
POL(0) = 0
POL(1) = 0
POL(I1(x1)) = x1
POL(O1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
-12(I1(x), I1(y)) -> -12(x, y)
-12(O1(x), I1(y)) -> -12(x, y)
-12(O1(x), I1(y)) -> -12(-2(x, y), I1(1))
O1(0) -> 0
+2(0, x) -> x
+2(x, 0) -> x
+2(O1(x), O1(y)) -> O1(+2(x, y))
+2(O1(x), I1(y)) -> I1(+2(x, y))
+2(I1(x), O1(y)) -> I1(+2(x, y))
+2(I1(x), I1(y)) -> O1(+2(+2(x, y), I1(0)))
*2(0, x) -> 0
*2(x, 0) -> 0
*2(O1(x), y) -> O1(*2(x, y))
*2(I1(x), y) -> +2(O1(*2(x, y)), y)
-2(x, 0) -> x
-2(0, x) -> 0
-2(O1(x), O1(y)) -> O1(-2(x, y))
-2(O1(x), I1(y)) -> I1(-2(-2(x, y), I1(1)))
-2(I1(x), O1(y)) -> I1(-2(x, y))
-2(I1(x), I1(y)) -> O1(-2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
-12(I1(x), I1(y)) -> -12(x, y)
-12(O1(x), I1(y)) -> -12(x, y)
Used ordering: Polynomial interpretation [21]:
-12(O1(x), I1(y)) -> -12(-2(x, y), I1(1))
POL(-2(x1, x2)) = 0
POL(-12(x1, x2)) = x2
POL(0) = 0
POL(1) = 0
POL(I1(x1)) = 1 + x1
POL(O1(x1)) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
-12(O1(x), I1(y)) -> -12(-2(x, y), I1(1))
O1(0) -> 0
+2(0, x) -> x
+2(x, 0) -> x
+2(O1(x), O1(y)) -> O1(+2(x, y))
+2(O1(x), I1(y)) -> I1(+2(x, y))
+2(I1(x), O1(y)) -> I1(+2(x, y))
+2(I1(x), I1(y)) -> O1(+2(+2(x, y), I1(0)))
*2(0, x) -> 0
*2(x, 0) -> 0
*2(O1(x), y) -> O1(*2(x, y))
*2(I1(x), y) -> +2(O1(*2(x, y)), y)
-2(x, 0) -> x
-2(0, x) -> 0
-2(O1(x), O1(y)) -> O1(-2(x, y))
-2(O1(x), I1(y)) -> I1(-2(-2(x, y), I1(1)))
-2(I1(x), O1(y)) -> I1(-2(x, y))
-2(I1(x), I1(y)) -> O1(-2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
-12(O1(x), I1(y)) -> -12(-2(x, y), I1(1))
POL(-2(x1, x2)) = x1
POL(-12(x1, x2)) = x1·x2
POL(0) = 0
POL(1) = 0
POL(I1(x1)) = 1 + x1
POL(O1(x1)) = 1 + x1
-2(O1(x), O1(y)) -> O1(-2(x, y))
-2(I1(x), O1(y)) -> I1(-2(x, y))
-2(x, 0) -> x
O1(0) -> 0
-2(O1(x), I1(y)) -> I1(-2(-2(x, y), I1(1)))
-2(0, x) -> 0
-2(I1(x), I1(y)) -> O1(-2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
O1(0) -> 0
+2(0, x) -> x
+2(x, 0) -> x
+2(O1(x), O1(y)) -> O1(+2(x, y))
+2(O1(x), I1(y)) -> I1(+2(x, y))
+2(I1(x), O1(y)) -> I1(+2(x, y))
+2(I1(x), I1(y)) -> O1(+2(+2(x, y), I1(0)))
*2(0, x) -> 0
*2(x, 0) -> 0
*2(O1(x), y) -> O1(*2(x, y))
*2(I1(x), y) -> +2(O1(*2(x, y)), y)
-2(x, 0) -> x
-2(0, x) -> 0
-2(O1(x), O1(y)) -> O1(-2(x, y))
-2(O1(x), I1(y)) -> I1(-2(-2(x, y), I1(1)))
-2(I1(x), O1(y)) -> I1(-2(x, y))
-2(I1(x), I1(y)) -> O1(-2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
+12(I1(x), O1(y)) -> +12(x, y)
+12(O1(x), I1(y)) -> +12(x, y)
+12(I1(x), I1(y)) -> +12(+2(x, y), I1(0))
+12(I1(x), I1(y)) -> +12(x, y)
+12(O1(x), O1(y)) -> +12(x, y)
O1(0) -> 0
+2(0, x) -> x
+2(x, 0) -> x
+2(O1(x), O1(y)) -> O1(+2(x, y))
+2(O1(x), I1(y)) -> I1(+2(x, y))
+2(I1(x), O1(y)) -> I1(+2(x, y))
+2(I1(x), I1(y)) -> O1(+2(+2(x, y), I1(0)))
*2(0, x) -> 0
*2(x, 0) -> 0
*2(O1(x), y) -> O1(*2(x, y))
*2(I1(x), y) -> +2(O1(*2(x, y)), y)
-2(x, 0) -> x
-2(0, x) -> 0
-2(O1(x), O1(y)) -> O1(-2(x, y))
-2(O1(x), I1(y)) -> I1(-2(-2(x, y), I1(1)))
-2(I1(x), O1(y)) -> I1(-2(x, y))
-2(I1(x), I1(y)) -> O1(-2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(I1(x), O1(y)) -> +12(x, y)
+12(O1(x), O1(y)) -> +12(x, y)
Used ordering: Polynomial interpretation [21]:
+12(O1(x), I1(y)) -> +12(x, y)
+12(I1(x), I1(y)) -> +12(+2(x, y), I1(0))
+12(I1(x), I1(y)) -> +12(x, y)
POL(+2(x1, x2)) = 0
POL(+12(x1, x2)) = x2
POL(0) = 0
POL(I1(x1)) = x1
POL(O1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
+12(O1(x), I1(y)) -> +12(x, y)
+12(I1(x), I1(y)) -> +12(+2(x, y), I1(0))
+12(I1(x), I1(y)) -> +12(x, y)
O1(0) -> 0
+2(0, x) -> x
+2(x, 0) -> x
+2(O1(x), O1(y)) -> O1(+2(x, y))
+2(O1(x), I1(y)) -> I1(+2(x, y))
+2(I1(x), O1(y)) -> I1(+2(x, y))
+2(I1(x), I1(y)) -> O1(+2(+2(x, y), I1(0)))
*2(0, x) -> 0
*2(x, 0) -> 0
*2(O1(x), y) -> O1(*2(x, y))
*2(I1(x), y) -> +2(O1(*2(x, y)), y)
-2(x, 0) -> x
-2(0, x) -> 0
-2(O1(x), O1(y)) -> O1(-2(x, y))
-2(O1(x), I1(y)) -> I1(-2(-2(x, y), I1(1)))
-2(I1(x), O1(y)) -> I1(-2(x, y))
-2(I1(x), I1(y)) -> O1(-2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(O1(x), I1(y)) -> +12(x, y)
+12(I1(x), I1(y)) -> +12(x, y)
Used ordering: Polynomial interpretation [21]:
+12(I1(x), I1(y)) -> +12(+2(x, y), I1(0))
POL(+2(x1, x2)) = 0
POL(+12(x1, x2)) = x2
POL(0) = 0
POL(I1(x1)) = 1 + x1
POL(O1(x1)) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
+12(I1(x), I1(y)) -> +12(+2(x, y), I1(0))
O1(0) -> 0
+2(0, x) -> x
+2(x, 0) -> x
+2(O1(x), O1(y)) -> O1(+2(x, y))
+2(O1(x), I1(y)) -> I1(+2(x, y))
+2(I1(x), O1(y)) -> I1(+2(x, y))
+2(I1(x), I1(y)) -> O1(+2(+2(x, y), I1(0)))
*2(0, x) -> 0
*2(x, 0) -> 0
*2(O1(x), y) -> O1(*2(x, y))
*2(I1(x), y) -> +2(O1(*2(x, y)), y)
-2(x, 0) -> x
-2(0, x) -> 0
-2(O1(x), O1(y)) -> O1(-2(x, y))
-2(O1(x), I1(y)) -> I1(-2(-2(x, y), I1(1)))
-2(I1(x), O1(y)) -> I1(-2(x, y))
-2(I1(x), I1(y)) -> O1(-2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(I1(x), I1(y)) -> +12(+2(x, y), I1(0))
POL(+2(x1, x2)) = x1·x2
POL(+12(x1, x2)) = x1·x2
POL(0) = 1
POL(I1(x1)) = 1 + 2·x1
POL(O1(x1)) = 1 + x1
+2(I1(x), O1(y)) -> I1(+2(x, y))
O1(0) -> 0
+2(x, 0) -> x
+2(O1(x), O1(y)) -> O1(+2(x, y))
+2(O1(x), I1(y)) -> I1(+2(x, y))
+2(0, x) -> x
+2(I1(x), I1(y)) -> O1(+2(+2(x, y), I1(0)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
O1(0) -> 0
+2(0, x) -> x
+2(x, 0) -> x
+2(O1(x), O1(y)) -> O1(+2(x, y))
+2(O1(x), I1(y)) -> I1(+2(x, y))
+2(I1(x), O1(y)) -> I1(+2(x, y))
+2(I1(x), I1(y)) -> O1(+2(+2(x, y), I1(0)))
*2(0, x) -> 0
*2(x, 0) -> 0
*2(O1(x), y) -> O1(*2(x, y))
*2(I1(x), y) -> +2(O1(*2(x, y)), y)
-2(x, 0) -> x
-2(0, x) -> 0
-2(O1(x), O1(y)) -> O1(-2(x, y))
-2(O1(x), I1(y)) -> I1(-2(-2(x, y), I1(1)))
-2(I1(x), O1(y)) -> I1(-2(x, y))
-2(I1(x), I1(y)) -> O1(-2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
*12(I1(x), y) -> *12(x, y)
*12(O1(x), y) -> *12(x, y)
O1(0) -> 0
+2(0, x) -> x
+2(x, 0) -> x
+2(O1(x), O1(y)) -> O1(+2(x, y))
+2(O1(x), I1(y)) -> I1(+2(x, y))
+2(I1(x), O1(y)) -> I1(+2(x, y))
+2(I1(x), I1(y)) -> O1(+2(+2(x, y), I1(0)))
*2(0, x) -> 0
*2(x, 0) -> 0
*2(O1(x), y) -> O1(*2(x, y))
*2(I1(x), y) -> +2(O1(*2(x, y)), y)
-2(x, 0) -> x
-2(0, x) -> 0
-2(O1(x), O1(y)) -> O1(-2(x, y))
-2(O1(x), I1(y)) -> I1(-2(-2(x, y), I1(1)))
-2(I1(x), O1(y)) -> I1(-2(x, y))
-2(I1(x), I1(y)) -> O1(-2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(I1(x), y) -> *12(x, y)
Used ordering: Polynomial interpretation [21]:
*12(O1(x), y) -> *12(x, y)
POL(*12(x1, x2)) = x1
POL(I1(x1)) = 1 + x1
POL(O1(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
*12(O1(x), y) -> *12(x, y)
O1(0) -> 0
+2(0, x) -> x
+2(x, 0) -> x
+2(O1(x), O1(y)) -> O1(+2(x, y))
+2(O1(x), I1(y)) -> I1(+2(x, y))
+2(I1(x), O1(y)) -> I1(+2(x, y))
+2(I1(x), I1(y)) -> O1(+2(+2(x, y), I1(0)))
*2(0, x) -> 0
*2(x, 0) -> 0
*2(O1(x), y) -> O1(*2(x, y))
*2(I1(x), y) -> +2(O1(*2(x, y)), y)
-2(x, 0) -> x
-2(0, x) -> 0
-2(O1(x), O1(y)) -> O1(-2(x, y))
-2(O1(x), I1(y)) -> I1(-2(-2(x, y), I1(1)))
-2(I1(x), O1(y)) -> I1(-2(x, y))
-2(I1(x), I1(y)) -> O1(-2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(O1(x), y) -> *12(x, y)
POL(*12(x1, x2)) = x1
POL(O1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
O1(0) -> 0
+2(0, x) -> x
+2(x, 0) -> x
+2(O1(x), O1(y)) -> O1(+2(x, y))
+2(O1(x), I1(y)) -> I1(+2(x, y))
+2(I1(x), O1(y)) -> I1(+2(x, y))
+2(I1(x), I1(y)) -> O1(+2(+2(x, y), I1(0)))
*2(0, x) -> 0
*2(x, 0) -> 0
*2(O1(x), y) -> O1(*2(x, y))
*2(I1(x), y) -> +2(O1(*2(x, y)), y)
-2(x, 0) -> x
-2(0, x) -> 0
-2(O1(x), O1(y)) -> O1(-2(x, y))
-2(O1(x), I1(y)) -> I1(-2(-2(x, y), I1(1)))
-2(I1(x), O1(y)) -> I1(-2(x, y))
-2(I1(x), I1(y)) -> O1(-2(x, y))