Consider the TRS R consisting of the rewrite rules 1: f(x,y,w,w,a) -> g1(x,x,y,w) 2: f(x,y,w,a,a) -> g1(y,x,x,w) 3: f(x,y,a,a,w) -> g2(x,y,y,w) 4: f(x,y,a,w,w) -> g2(y,y,x,w) 5: g1(x,x,y,a) -> h(x,y) 6: g1(y,x,x,a) -> h(x,y) 7: g2(x,y,y,a) -> h(x,y) 8: g2(y,y,x,a) -> h(x,y) 9: h(x,x) -> x There are 8 dependency pairs: 10: F(x,y,w,w,a) -> G1(x,x,y,w) 11: F(x,y,w,a,a) -> G1(y,x,x,w) 12: F(x,y,a,a,w) -> G2(x,y,y,w) 13: F(x,y,a,w,w) -> G2(y,y,x,w) 14: G1(x,x,y,a) -> H(x,y) 15: G1(y,x,x,a) -> H(x,y) 16: G2(x,y,y,a) -> H(x,y) 17: G2(y,y,x,a) -> H(x,y) The approximated dependency graph contains no SCCs and hence the TRS is trivially terminating.