Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
c1(c1(b1(c1(x)))) -> b1(a2(0, c1(x)))
c1(c1(x)) -> b1(c1(b1(c1(x))))
a2(0, x) -> c1(c1(x))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
c1(c1(b1(c1(x)))) -> b1(a2(0, c1(x)))
c1(c1(x)) -> b1(c1(b1(c1(x))))
a2(0, x) -> c1(c1(x))
Q is empty.
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
C1(c1(b1(c1(x)))) -> A2(0, c1(x))
C1(c1(x)) -> C1(b1(c1(x)))
A2(0, x) -> C1(x)
A2(0, x) -> C1(c1(x))
The TRS R consists of the following rules:
c1(c1(b1(c1(x)))) -> b1(a2(0, c1(x)))
c1(c1(x)) -> b1(c1(b1(c1(x))))
a2(0, x) -> c1(c1(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
C1(c1(b1(c1(x)))) -> A2(0, c1(x))
C1(c1(x)) -> C1(b1(c1(x)))
A2(0, x) -> C1(x)
A2(0, x) -> C1(c1(x))
The TRS R consists of the following rules:
c1(c1(b1(c1(x)))) -> b1(a2(0, c1(x)))
c1(c1(x)) -> b1(c1(b1(c1(x))))
a2(0, x) -> c1(c1(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
C1(c1(b1(c1(x)))) -> A2(0, c1(x))
A2(0, x) -> C1(x)
A2(0, x) -> C1(c1(x))
The TRS R consists of the following rules:
c1(c1(b1(c1(x)))) -> b1(a2(0, c1(x)))
c1(c1(x)) -> b1(c1(b1(c1(x))))
a2(0, x) -> c1(c1(x))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.