minus2(x, x) -> 0
minus2(s1(x), s1(y)) -> minus2(x, y)
minus2(0, x) -> 0
minus2(x, 0) -> x
div2(s1(x), s1(y)) -> s1(div2(minus2(x, y), s1(y)))
div2(0, s1(y)) -> 0
f3(x, 0, b) -> x
f3(x, s1(y), b) -> div2(f3(x, minus2(s1(y), s1(0)), b), b)
↳ QTRS
↳ DependencyPairsProof
minus2(x, x) -> 0
minus2(s1(x), s1(y)) -> minus2(x, y)
minus2(0, x) -> 0
minus2(x, 0) -> x
div2(s1(x), s1(y)) -> s1(div2(minus2(x, y), s1(y)))
div2(0, s1(y)) -> 0
f3(x, 0, b) -> x
f3(x, s1(y), b) -> div2(f3(x, minus2(s1(y), s1(0)), b), b)
DIV2(s1(x), s1(y)) -> MINUS2(x, y)
DIV2(s1(x), s1(y)) -> DIV2(minus2(x, y), s1(y))
F3(x, s1(y), b) -> DIV2(f3(x, minus2(s1(y), s1(0)), b), b)
F3(x, s1(y), b) -> F3(x, minus2(s1(y), s1(0)), b)
F3(x, s1(y), b) -> MINUS2(s1(y), s1(0))
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
minus2(x, x) -> 0
minus2(s1(x), s1(y)) -> minus2(x, y)
minus2(0, x) -> 0
minus2(x, 0) -> x
div2(s1(x), s1(y)) -> s1(div2(minus2(x, y), s1(y)))
div2(0, s1(y)) -> 0
f3(x, 0, b) -> x
f3(x, s1(y), b) -> div2(f3(x, minus2(s1(y), s1(0)), b), b)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
DIV2(s1(x), s1(y)) -> MINUS2(x, y)
DIV2(s1(x), s1(y)) -> DIV2(minus2(x, y), s1(y))
F3(x, s1(y), b) -> DIV2(f3(x, minus2(s1(y), s1(0)), b), b)
F3(x, s1(y), b) -> F3(x, minus2(s1(y), s1(0)), b)
F3(x, s1(y), b) -> MINUS2(s1(y), s1(0))
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
minus2(x, x) -> 0
minus2(s1(x), s1(y)) -> minus2(x, y)
minus2(0, x) -> 0
minus2(x, 0) -> x
div2(s1(x), s1(y)) -> s1(div2(minus2(x, y), s1(y)))
div2(0, s1(y)) -> 0
f3(x, 0, b) -> x
f3(x, s1(y), b) -> div2(f3(x, minus2(s1(y), s1(0)), b), b)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
minus2(x, x) -> 0
minus2(s1(x), s1(y)) -> minus2(x, y)
minus2(0, x) -> 0
minus2(x, 0) -> x
div2(s1(x), s1(y)) -> s1(div2(minus2(x, y), s1(y)))
div2(0, s1(y)) -> 0
f3(x, 0, b) -> x
f3(x, s1(y), b) -> div2(f3(x, minus2(s1(y), s1(0)), b), b)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
POL(MINUS2(x1, x2)) = x1·x2
POL(s1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
minus2(x, x) -> 0
minus2(s1(x), s1(y)) -> minus2(x, y)
minus2(0, x) -> 0
minus2(x, 0) -> x
div2(s1(x), s1(y)) -> s1(div2(minus2(x, y), s1(y)))
div2(0, s1(y)) -> 0
f3(x, 0, b) -> x
f3(x, s1(y), b) -> div2(f3(x, minus2(s1(y), s1(0)), b), b)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
DIV2(s1(x), s1(y)) -> DIV2(minus2(x, y), s1(y))
minus2(x, x) -> 0
minus2(s1(x), s1(y)) -> minus2(x, y)
minus2(0, x) -> 0
minus2(x, 0) -> x
div2(s1(x), s1(y)) -> s1(div2(minus2(x, y), s1(y)))
div2(0, s1(y)) -> 0
f3(x, 0, b) -> x
f3(x, s1(y), b) -> div2(f3(x, minus2(s1(y), s1(0)), b), b)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DIV2(s1(x), s1(y)) -> DIV2(minus2(x, y), s1(y))
POL(0) = 0
POL(DIV2(x1, x2)) = x1·x2
POL(minus2(x1, x2)) = x1
POL(s1(x1)) = 1 + x1
minus2(0, x) -> 0
minus2(s1(x), s1(y)) -> minus2(x, y)
minus2(x, 0) -> x
minus2(x, x) -> 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
minus2(x, x) -> 0
minus2(s1(x), s1(y)) -> minus2(x, y)
minus2(0, x) -> 0
minus2(x, 0) -> x
div2(s1(x), s1(y)) -> s1(div2(minus2(x, y), s1(y)))
div2(0, s1(y)) -> 0
f3(x, 0, b) -> x
f3(x, s1(y), b) -> div2(f3(x, minus2(s1(y), s1(0)), b), b)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
F3(x, s1(y), b) -> F3(x, minus2(s1(y), s1(0)), b)
minus2(x, x) -> 0
minus2(s1(x), s1(y)) -> minus2(x, y)
minus2(0, x) -> 0
minus2(x, 0) -> x
div2(s1(x), s1(y)) -> s1(div2(minus2(x, y), s1(y)))
div2(0, s1(y)) -> 0
f3(x, 0, b) -> x
f3(x, s1(y), b) -> div2(f3(x, minus2(s1(y), s1(0)), b), b)