Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

FIRST2(X1, mark1(X2)) -> FIRST2(X1, X2)
RECIP1(mark1(X)) -> RECIP1(X)
ACTIVE1(recip1(X)) -> RECIP1(active1(X))
S1(mark1(X)) -> S1(X)
FIRST2(mark1(X1), X2) -> FIRST2(X1, X2)
RECIP1(ok1(X)) -> RECIP1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X2)
PROPER1(half1(X)) -> PROPER1(X)
ACTIVE1(dbl1(s1(X))) -> DBL1(X)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(terms1(X)) -> ACTIVE1(X)
ACTIVE1(terms1(N)) -> SQR1(N)
ACTIVE1(first2(X1, X2)) -> FIRST2(active1(X1), X2)
TOP1(mark1(X)) -> TOP1(proper1(X))
PROPER1(sqr1(X)) -> PROPER1(X)
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
ACTIVE1(add2(X1, X2)) -> ADD2(active1(X1), X2)
SQR1(mark1(X)) -> SQR1(X)
TOP1(ok1(X)) -> ACTIVE1(X)
ACTIVE1(terms1(N)) -> CONS2(recip1(sqr1(N)), terms1(s1(N)))
PROPER1(sqr1(X)) -> SQR1(proper1(X))
ACTIVE1(half1(s1(s1(X)))) -> S1(half1(X))
ACTIVE1(s1(X)) -> S1(active1(X))
PROPER1(s1(X)) -> PROPER1(X)
ACTIVE1(add2(X1, X2)) -> ADD2(X1, active1(X2))
PROPER1(recip1(X)) -> RECIP1(proper1(X))
ACTIVE1(add2(s1(X), Y)) -> ADD2(X, Y)
ACTIVE1(sqr1(s1(X))) -> ADD2(sqr1(X), dbl1(X))
ACTIVE1(terms1(N)) -> RECIP1(sqr1(N))
ACTIVE1(first2(s1(X), cons2(Y, Z))) -> FIRST2(X, Z)
TOP1(mark1(X)) -> PROPER1(X)
ADD2(mark1(X1), X2) -> ADD2(X1, X2)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
PROPER1(terms1(X)) -> PROPER1(X)
DBL1(ok1(X)) -> DBL1(X)
PROPER1(half1(X)) -> HALF1(proper1(X))
PROPER1(first2(X1, X2)) -> PROPER1(X1)
HALF1(mark1(X)) -> HALF1(X)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
ACTIVE1(sqr1(s1(X))) -> DBL1(X)
ACTIVE1(first2(X1, X2)) -> FIRST2(X1, active1(X2))
ACTIVE1(dbl1(X)) -> DBL1(active1(X))
PROPER1(add2(X1, X2)) -> PROPER1(X1)
PROPER1(add2(X1, X2)) -> ADD2(proper1(X1), proper1(X2))
PROPER1(s1(X)) -> S1(proper1(X))
S1(ok1(X)) -> S1(X)
ACTIVE1(first2(s1(X), cons2(Y, Z))) -> CONS2(Y, first2(X, Z))
ACTIVE1(s1(X)) -> ACTIVE1(X)
PROPER1(recip1(X)) -> PROPER1(X)
ACTIVE1(half1(X)) -> ACTIVE1(X)
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
ACTIVE1(cons2(X1, X2)) -> CONS2(active1(X1), X2)
ADD2(ok1(X1), ok1(X2)) -> ADD2(X1, X2)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(half1(s1(s1(X)))) -> HALF1(X)
ACTIVE1(sqr1(s1(X))) -> S1(add2(sqr1(X), dbl1(X)))
TERMS1(ok1(X)) -> TERMS1(X)
ACTIVE1(terms1(X)) -> TERMS1(active1(X))
ACTIVE1(sqr1(X)) -> SQR1(active1(X))
ACTIVE1(terms1(N)) -> TERMS1(s1(N))
DBL1(mark1(X)) -> DBL1(X)
PROPER1(first2(X1, X2)) -> FIRST2(proper1(X1), proper1(X2))
ACTIVE1(dbl1(s1(X))) -> S1(dbl1(X))
PROPER1(add2(X1, X2)) -> PROPER1(X2)
ACTIVE1(half1(X)) -> HALF1(active1(X))
ACTIVE1(sqr1(s1(X))) -> SQR1(X)
FIRST2(ok1(X1), ok1(X2)) -> FIRST2(X1, X2)
ADD2(X1, mark1(X2)) -> ADD2(X1, X2)
PROPER1(dbl1(X)) -> DBL1(proper1(X))
PROPER1(cons2(X1, X2)) -> CONS2(proper1(X1), proper1(X2))
SQR1(ok1(X)) -> SQR1(X)
PROPER1(terms1(X)) -> TERMS1(proper1(X))
TERMS1(mark1(X)) -> TERMS1(X)
TOP1(ok1(X)) -> TOP1(active1(X))
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
ACTIVE1(terms1(N)) -> S1(N)
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
ACTIVE1(dbl1(s1(X))) -> S1(s1(dbl1(X)))
HALF1(ok1(X)) -> HALF1(X)
PROPER1(dbl1(X)) -> PROPER1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
ACTIVE1(add2(s1(X), Y)) -> S1(add2(X, Y))

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

FIRST2(X1, mark1(X2)) -> FIRST2(X1, X2)
RECIP1(mark1(X)) -> RECIP1(X)
ACTIVE1(recip1(X)) -> RECIP1(active1(X))
S1(mark1(X)) -> S1(X)
FIRST2(mark1(X1), X2) -> FIRST2(X1, X2)
RECIP1(ok1(X)) -> RECIP1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X2)
PROPER1(half1(X)) -> PROPER1(X)
ACTIVE1(dbl1(s1(X))) -> DBL1(X)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(terms1(X)) -> ACTIVE1(X)
ACTIVE1(terms1(N)) -> SQR1(N)
ACTIVE1(first2(X1, X2)) -> FIRST2(active1(X1), X2)
TOP1(mark1(X)) -> TOP1(proper1(X))
PROPER1(sqr1(X)) -> PROPER1(X)
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
ACTIVE1(add2(X1, X2)) -> ADD2(active1(X1), X2)
SQR1(mark1(X)) -> SQR1(X)
TOP1(ok1(X)) -> ACTIVE1(X)
ACTIVE1(terms1(N)) -> CONS2(recip1(sqr1(N)), terms1(s1(N)))
PROPER1(sqr1(X)) -> SQR1(proper1(X))
ACTIVE1(half1(s1(s1(X)))) -> S1(half1(X))
ACTIVE1(s1(X)) -> S1(active1(X))
PROPER1(s1(X)) -> PROPER1(X)
ACTIVE1(add2(X1, X2)) -> ADD2(X1, active1(X2))
PROPER1(recip1(X)) -> RECIP1(proper1(X))
ACTIVE1(add2(s1(X), Y)) -> ADD2(X, Y)
ACTIVE1(sqr1(s1(X))) -> ADD2(sqr1(X), dbl1(X))
ACTIVE1(terms1(N)) -> RECIP1(sqr1(N))
ACTIVE1(first2(s1(X), cons2(Y, Z))) -> FIRST2(X, Z)
TOP1(mark1(X)) -> PROPER1(X)
ADD2(mark1(X1), X2) -> ADD2(X1, X2)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
PROPER1(terms1(X)) -> PROPER1(X)
DBL1(ok1(X)) -> DBL1(X)
PROPER1(half1(X)) -> HALF1(proper1(X))
PROPER1(first2(X1, X2)) -> PROPER1(X1)
HALF1(mark1(X)) -> HALF1(X)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
ACTIVE1(sqr1(s1(X))) -> DBL1(X)
ACTIVE1(first2(X1, X2)) -> FIRST2(X1, active1(X2))
ACTIVE1(dbl1(X)) -> DBL1(active1(X))
PROPER1(add2(X1, X2)) -> PROPER1(X1)
PROPER1(add2(X1, X2)) -> ADD2(proper1(X1), proper1(X2))
PROPER1(s1(X)) -> S1(proper1(X))
S1(ok1(X)) -> S1(X)
ACTIVE1(first2(s1(X), cons2(Y, Z))) -> CONS2(Y, first2(X, Z))
ACTIVE1(s1(X)) -> ACTIVE1(X)
PROPER1(recip1(X)) -> PROPER1(X)
ACTIVE1(half1(X)) -> ACTIVE1(X)
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
ACTIVE1(cons2(X1, X2)) -> CONS2(active1(X1), X2)
ADD2(ok1(X1), ok1(X2)) -> ADD2(X1, X2)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(half1(s1(s1(X)))) -> HALF1(X)
ACTIVE1(sqr1(s1(X))) -> S1(add2(sqr1(X), dbl1(X)))
TERMS1(ok1(X)) -> TERMS1(X)
ACTIVE1(terms1(X)) -> TERMS1(active1(X))
ACTIVE1(sqr1(X)) -> SQR1(active1(X))
ACTIVE1(terms1(N)) -> TERMS1(s1(N))
DBL1(mark1(X)) -> DBL1(X)
PROPER1(first2(X1, X2)) -> FIRST2(proper1(X1), proper1(X2))
ACTIVE1(dbl1(s1(X))) -> S1(dbl1(X))
PROPER1(add2(X1, X2)) -> PROPER1(X2)
ACTIVE1(half1(X)) -> HALF1(active1(X))
ACTIVE1(sqr1(s1(X))) -> SQR1(X)
FIRST2(ok1(X1), ok1(X2)) -> FIRST2(X1, X2)
ADD2(X1, mark1(X2)) -> ADD2(X1, X2)
PROPER1(dbl1(X)) -> DBL1(proper1(X))
PROPER1(cons2(X1, X2)) -> CONS2(proper1(X1), proper1(X2))
SQR1(ok1(X)) -> SQR1(X)
PROPER1(terms1(X)) -> TERMS1(proper1(X))
TERMS1(mark1(X)) -> TERMS1(X)
TOP1(ok1(X)) -> TOP1(active1(X))
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
ACTIVE1(terms1(N)) -> S1(N)
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
ACTIVE1(dbl1(s1(X))) -> S1(s1(dbl1(X)))
HALF1(ok1(X)) -> HALF1(X)
PROPER1(dbl1(X)) -> PROPER1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
ACTIVE1(add2(s1(X), Y)) -> S1(add2(X, Y))

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 12 SCCs with 40 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HALF1(mark1(X)) -> HALF1(X)
HALF1(ok1(X)) -> HALF1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


HALF1(ok1(X)) -> HALF1(X)
The remaining pairs can at least be oriented weakly.

HALF1(mark1(X)) -> HALF1(X)
Used ordering: Polynomial interpretation [21]:

POL(HALF1(x1)) = x12   
POL(mark1(x1)) = x1   
POL(ok1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HALF1(mark1(X)) -> HALF1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


HALF1(mark1(X)) -> HALF1(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(HALF1(x1)) = x12   
POL(mark1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FIRST2(X1, mark1(X2)) -> FIRST2(X1, X2)
FIRST2(ok1(X1), ok1(X2)) -> FIRST2(X1, X2)
FIRST2(mark1(X1), X2) -> FIRST2(X1, X2)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FIRST2(ok1(X1), ok1(X2)) -> FIRST2(X1, X2)
The remaining pairs can at least be oriented weakly.

FIRST2(X1, mark1(X2)) -> FIRST2(X1, X2)
FIRST2(mark1(X1), X2) -> FIRST2(X1, X2)
Used ordering: Polynomial interpretation [21]:

POL(FIRST2(x1, x2)) = x1·x2   
POL(mark1(x1)) = x1   
POL(ok1(x1)) = 1 + x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FIRST2(X1, mark1(X2)) -> FIRST2(X1, X2)
FIRST2(mark1(X1), X2) -> FIRST2(X1, X2)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FIRST2(mark1(X1), X2) -> FIRST2(X1, X2)
The remaining pairs can at least be oriented weakly.

FIRST2(X1, mark1(X2)) -> FIRST2(X1, X2)
Used ordering: Polynomial interpretation [21]:

POL(FIRST2(x1, x2)) = x1   
POL(mark1(x1)) = 1 + x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FIRST2(X1, mark1(X2)) -> FIRST2(X1, X2)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FIRST2(X1, mark1(X2)) -> FIRST2(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(FIRST2(x1, x2)) = x2   
POL(mark1(x1)) = 1 + x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DBL1(mark1(X)) -> DBL1(X)
DBL1(ok1(X)) -> DBL1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


DBL1(ok1(X)) -> DBL1(X)
The remaining pairs can at least be oriented weakly.

DBL1(mark1(X)) -> DBL1(X)
Used ordering: Polynomial interpretation [21]:

POL(DBL1(x1)) = x12   
POL(mark1(x1)) = x1   
POL(ok1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DBL1(mark1(X)) -> DBL1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


DBL1(mark1(X)) -> DBL1(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(DBL1(x1)) = x12   
POL(mark1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADD2(X1, mark1(X2)) -> ADD2(X1, X2)
ADD2(mark1(X1), X2) -> ADD2(X1, X2)
ADD2(ok1(X1), ok1(X2)) -> ADD2(X1, X2)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ADD2(ok1(X1), ok1(X2)) -> ADD2(X1, X2)
The remaining pairs can at least be oriented weakly.

ADD2(X1, mark1(X2)) -> ADD2(X1, X2)
ADD2(mark1(X1), X2) -> ADD2(X1, X2)
Used ordering: Polynomial interpretation [21]:

POL(ADD2(x1, x2)) = x1·x2   
POL(mark1(x1)) = x1   
POL(ok1(x1)) = 1 + x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADD2(X1, mark1(X2)) -> ADD2(X1, X2)
ADD2(mark1(X1), X2) -> ADD2(X1, X2)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ADD2(mark1(X1), X2) -> ADD2(X1, X2)
The remaining pairs can at least be oriented weakly.

ADD2(X1, mark1(X2)) -> ADD2(X1, X2)
Used ordering: Polynomial interpretation [21]:

POL(ADD2(x1, x2)) = x1   
POL(mark1(x1)) = 1 + x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADD2(X1, mark1(X2)) -> ADD2(X1, X2)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ADD2(X1, mark1(X2)) -> ADD2(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(ADD2(x1, x2)) = x2   
POL(mark1(x1)) = 1 + x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S1(ok1(X)) -> S1(X)
S1(mark1(X)) -> S1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


S1(mark1(X)) -> S1(X)
The remaining pairs can at least be oriented weakly.

S1(ok1(X)) -> S1(X)
Used ordering: Polynomial interpretation [21]:

POL(S1(x1)) = x12   
POL(mark1(x1)) = 1 + x12   
POL(ok1(x1)) = x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S1(ok1(X)) -> S1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


S1(ok1(X)) -> S1(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(S1(x1)) = x12   
POL(ok1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SQR1(ok1(X)) -> SQR1(X)
SQR1(mark1(X)) -> SQR1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SQR1(mark1(X)) -> SQR1(X)
The remaining pairs can at least be oriented weakly.

SQR1(ok1(X)) -> SQR1(X)
Used ordering: Polynomial interpretation [21]:

POL(SQR1(x1)) = x12   
POL(mark1(x1)) = 1 + x12   
POL(ok1(x1)) = x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SQR1(ok1(X)) -> SQR1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SQR1(ok1(X)) -> SQR1(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(SQR1(x1)) = x12   
POL(ok1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

RECIP1(mark1(X)) -> RECIP1(X)
RECIP1(ok1(X)) -> RECIP1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


RECIP1(ok1(X)) -> RECIP1(X)
The remaining pairs can at least be oriented weakly.

RECIP1(mark1(X)) -> RECIP1(X)
Used ordering: Polynomial interpretation [21]:

POL(RECIP1(x1)) = x12   
POL(mark1(x1)) = x1   
POL(ok1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

RECIP1(mark1(X)) -> RECIP1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


RECIP1(mark1(X)) -> RECIP1(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(RECIP1(x1)) = x12   
POL(mark1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS2(mark1(X1), X2) -> CONS2(X1, X2)
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
The remaining pairs can at least be oriented weakly.

CONS2(mark1(X1), X2) -> CONS2(X1, X2)
Used ordering: Polynomial interpretation [21]:

POL(CONS2(x1, x2)) = x1·x2   
POL(mark1(x1)) = x1   
POL(ok1(x1)) = 1 + x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS2(mark1(X1), X2) -> CONS2(X1, X2)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


CONS2(mark1(X1), X2) -> CONS2(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(CONS2(x1, x2)) = x1   
POL(mark1(x1)) = 1 + x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TERMS1(mark1(X)) -> TERMS1(X)
TERMS1(ok1(X)) -> TERMS1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


TERMS1(ok1(X)) -> TERMS1(X)
The remaining pairs can at least be oriented weakly.

TERMS1(mark1(X)) -> TERMS1(X)
Used ordering: Polynomial interpretation [21]:

POL(TERMS1(x1)) = x12   
POL(mark1(x1)) = x1   
POL(ok1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TERMS1(mark1(X)) -> TERMS1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


TERMS1(mark1(X)) -> TERMS1(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(TERMS1(x1)) = x12   
POL(mark1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER1(half1(X)) -> PROPER1(X)
PROPER1(recip1(X)) -> PROPER1(X)
PROPER1(add2(X1, X2)) -> PROPER1(X1)
PROPER1(s1(X)) -> PROPER1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
PROPER1(terms1(X)) -> PROPER1(X)
PROPER1(first2(X1, X2)) -> PROPER1(X1)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
PROPER1(dbl1(X)) -> PROPER1(X)
PROPER1(add2(X1, X2)) -> PROPER1(X2)
PROPER1(sqr1(X)) -> PROPER1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER1(recip1(X)) -> PROPER1(X)
The remaining pairs can at least be oriented weakly.

PROPER1(half1(X)) -> PROPER1(X)
PROPER1(add2(X1, X2)) -> PROPER1(X1)
PROPER1(s1(X)) -> PROPER1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
PROPER1(terms1(X)) -> PROPER1(X)
PROPER1(first2(X1, X2)) -> PROPER1(X1)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
PROPER1(dbl1(X)) -> PROPER1(X)
PROPER1(add2(X1, X2)) -> PROPER1(X2)
PROPER1(sqr1(X)) -> PROPER1(X)
Used ordering: Polynomial interpretation [21]:

POL(PROPER1(x1)) = x12   
POL(add2(x1, x2)) = x1 + x2   
POL(cons2(x1, x2)) = x1 + x2   
POL(dbl1(x1)) = x1   
POL(first2(x1, x2)) = x1 + x2   
POL(half1(x1)) = x1   
POL(recip1(x1)) = 1 + x12   
POL(s1(x1)) = x1   
POL(sqr1(x1)) = x1   
POL(terms1(x1)) = x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER1(half1(X)) -> PROPER1(X)
PROPER1(add2(X1, X2)) -> PROPER1(X1)
PROPER1(s1(X)) -> PROPER1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
PROPER1(terms1(X)) -> PROPER1(X)
PROPER1(first2(X1, X2)) -> PROPER1(X1)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
PROPER1(sqr1(X)) -> PROPER1(X)
PROPER1(add2(X1, X2)) -> PROPER1(X2)
PROPER1(dbl1(X)) -> PROPER1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER1(add2(X1, X2)) -> PROPER1(X1)
PROPER1(add2(X1, X2)) -> PROPER1(X2)
The remaining pairs can at least be oriented weakly.

PROPER1(half1(X)) -> PROPER1(X)
PROPER1(s1(X)) -> PROPER1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
PROPER1(terms1(X)) -> PROPER1(X)
PROPER1(first2(X1, X2)) -> PROPER1(X1)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
PROPER1(sqr1(X)) -> PROPER1(X)
PROPER1(dbl1(X)) -> PROPER1(X)
Used ordering: Polynomial interpretation [21]:

POL(PROPER1(x1)) = x12   
POL(add2(x1, x2)) = 1 + x1 + x2   
POL(cons2(x1, x2)) = x1 + x2   
POL(dbl1(x1)) = x1   
POL(first2(x1, x2)) = x1 + x2   
POL(half1(x1)) = x1   
POL(s1(x1)) = x1   
POL(sqr1(x1)) = x1   
POL(terms1(x1)) = x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER1(half1(X)) -> PROPER1(X)
PROPER1(s1(X)) -> PROPER1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
PROPER1(terms1(X)) -> PROPER1(X)
PROPER1(first2(X1, X2)) -> PROPER1(X1)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
PROPER1(dbl1(X)) -> PROPER1(X)
PROPER1(sqr1(X)) -> PROPER1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER1(s1(X)) -> PROPER1(X)
The remaining pairs can at least be oriented weakly.

PROPER1(half1(X)) -> PROPER1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
PROPER1(terms1(X)) -> PROPER1(X)
PROPER1(first2(X1, X2)) -> PROPER1(X1)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
PROPER1(dbl1(X)) -> PROPER1(X)
PROPER1(sqr1(X)) -> PROPER1(X)
Used ordering: Polynomial interpretation [21]:

POL(PROPER1(x1)) = x12   
POL(cons2(x1, x2)) = x1 + x2   
POL(dbl1(x1)) = x1   
POL(first2(x1, x2)) = x1 + x2   
POL(half1(x1)) = x1   
POL(s1(x1)) = 1 + x12   
POL(sqr1(x1)) = x1   
POL(terms1(x1)) = x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER1(half1(X)) -> PROPER1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
PROPER1(terms1(X)) -> PROPER1(X)
PROPER1(first2(X1, X2)) -> PROPER1(X1)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
PROPER1(sqr1(X)) -> PROPER1(X)
PROPER1(dbl1(X)) -> PROPER1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
The remaining pairs can at least be oriented weakly.

PROPER1(half1(X)) -> PROPER1(X)
PROPER1(terms1(X)) -> PROPER1(X)
PROPER1(first2(X1, X2)) -> PROPER1(X1)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
PROPER1(sqr1(X)) -> PROPER1(X)
PROPER1(dbl1(X)) -> PROPER1(X)
Used ordering: Polynomial interpretation [21]:

POL(PROPER1(x1)) = x12   
POL(cons2(x1, x2)) = 1 + x1 + x2   
POL(dbl1(x1)) = x1   
POL(first2(x1, x2)) = x1 + x2   
POL(half1(x1)) = x1   
POL(sqr1(x1)) = x1   
POL(terms1(x1)) = x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER1(half1(X)) -> PROPER1(X)
PROPER1(terms1(X)) -> PROPER1(X)
PROPER1(first2(X1, X2)) -> PROPER1(X1)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
PROPER1(dbl1(X)) -> PROPER1(X)
PROPER1(sqr1(X)) -> PROPER1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER1(terms1(X)) -> PROPER1(X)
The remaining pairs can at least be oriented weakly.

PROPER1(half1(X)) -> PROPER1(X)
PROPER1(first2(X1, X2)) -> PROPER1(X1)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
PROPER1(dbl1(X)) -> PROPER1(X)
PROPER1(sqr1(X)) -> PROPER1(X)
Used ordering: Polynomial interpretation [21]:

POL(PROPER1(x1)) = x12   
POL(dbl1(x1)) = x1   
POL(first2(x1, x2)) = x1 + x2   
POL(half1(x1)) = x1   
POL(sqr1(x1)) = x1   
POL(terms1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER1(half1(X)) -> PROPER1(X)
PROPER1(first2(X1, X2)) -> PROPER1(X1)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
PROPER1(sqr1(X)) -> PROPER1(X)
PROPER1(dbl1(X)) -> PROPER1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER1(first2(X1, X2)) -> PROPER1(X1)
PROPER1(first2(X1, X2)) -> PROPER1(X2)
The remaining pairs can at least be oriented weakly.

PROPER1(half1(X)) -> PROPER1(X)
PROPER1(sqr1(X)) -> PROPER1(X)
PROPER1(dbl1(X)) -> PROPER1(X)
Used ordering: Polynomial interpretation [21]:

POL(PROPER1(x1)) = x12   
POL(dbl1(x1)) = x1   
POL(first2(x1, x2)) = 1 + x1 + x2   
POL(half1(x1)) = x1   
POL(sqr1(x1)) = x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
QDP
                                    ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER1(half1(X)) -> PROPER1(X)
PROPER1(dbl1(X)) -> PROPER1(X)
PROPER1(sqr1(X)) -> PROPER1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER1(dbl1(X)) -> PROPER1(X)
The remaining pairs can at least be oriented weakly.

PROPER1(half1(X)) -> PROPER1(X)
PROPER1(sqr1(X)) -> PROPER1(X)
Used ordering: Polynomial interpretation [21]:

POL(PROPER1(x1)) = x12   
POL(dbl1(x1)) = 1 + x12   
POL(half1(x1)) = x1   
POL(sqr1(x1)) = x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
                                  ↳ QDP
                                    ↳ QDPOrderProof
QDP
                                        ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER1(half1(X)) -> PROPER1(X)
PROPER1(sqr1(X)) -> PROPER1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER1(sqr1(X)) -> PROPER1(X)
The remaining pairs can at least be oriented weakly.

PROPER1(half1(X)) -> PROPER1(X)
Used ordering: Polynomial interpretation [21]:

POL(PROPER1(x1)) = x12   
POL(half1(x1)) = x1   
POL(sqr1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
                                  ↳ QDP
                                    ↳ QDPOrderProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
QDP
                                            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER1(half1(X)) -> PROPER1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER1(half1(X)) -> PROPER1(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(PROPER1(x1)) = x12   
POL(half1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
                                  ↳ QDP
                                    ↳ QDPOrderProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
QDP
                                                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(dbl1(X)) -> ACTIVE1(X)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(terms1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X2)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE1(dbl1(X)) -> ACTIVE1(X)
The remaining pairs can at least be oriented weakly.

ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(terms1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X2)
Used ordering: Polynomial interpretation [21]:

POL(ACTIVE1(x1)) = x12   
POL(add2(x1, x2)) = x1 + x2   
POL(cons2(x1, x2)) = x1   
POL(dbl1(x1)) = 1 + x12   
POL(first2(x1, x2)) = x1 + x2   
POL(half1(x1)) = x1   
POL(recip1(x1)) = x1   
POL(s1(x1)) = x1   
POL(sqr1(x1)) = x1   
POL(terms1(x1)) = x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(terms1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X2)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE1(first2(X1, X2)) -> ACTIVE1(X2)
ACTIVE1(first2(X1, X2)) -> ACTIVE1(X1)
The remaining pairs can at least be oriented weakly.

ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(terms1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X2)
Used ordering: Polynomial interpretation [21]:

POL(ACTIVE1(x1)) = x12   
POL(add2(x1, x2)) = x1 + x2   
POL(cons2(x1, x2)) = x1   
POL(first2(x1, x2)) = 1 + x1 + x2   
POL(half1(x1)) = x1   
POL(recip1(x1)) = x1   
POL(s1(x1)) = x1   
POL(sqr1(x1)) = x1   
POL(terms1(x1)) = x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(terms1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X2)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
The remaining pairs can at least be oriented weakly.

ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(terms1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X2)
Used ordering: Polynomial interpretation [21]:

POL(ACTIVE1(x1)) = x12   
POL(add2(x1, x2)) = x1 + x2   
POL(cons2(x1, x2)) = 1 + x1   
POL(half1(x1)) = x1   
POL(recip1(x1)) = x1   
POL(s1(x1)) = x1   
POL(sqr1(x1)) = x1   
POL(terms1(x1)) = x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(terms1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X2)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE1(terms1(X)) -> ACTIVE1(X)
The remaining pairs can at least be oriented weakly.

ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X2)
Used ordering: Polynomial interpretation [21]:

POL(ACTIVE1(x1)) = x12   
POL(add2(x1, x2)) = x1 + x2   
POL(half1(x1)) = x1   
POL(recip1(x1)) = x1   
POL(s1(x1)) = x1   
POL(sqr1(x1)) = x1   
POL(terms1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X2)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE1(add2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(add2(X1, X2)) -> ACTIVE1(X2)
The remaining pairs can at least be oriented weakly.

ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
Used ordering: Polynomial interpretation [21]:

POL(ACTIVE1(x1)) = x12   
POL(add2(x1, x2)) = 1 + x1 + x2   
POL(half1(x1)) = x1   
POL(recip1(x1)) = x1   
POL(s1(x1)) = x1   
POL(sqr1(x1)) = x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(sqr1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE1(sqr1(X)) -> ACTIVE1(X)
The remaining pairs can at least be oriented weakly.

ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
Used ordering: Polynomial interpretation [21]:

POL(ACTIVE1(x1)) = x12   
POL(half1(x1)) = x1   
POL(recip1(x1)) = x1   
POL(s1(x1)) = x1   
POL(sqr1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
QDP
                                    ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE1(s1(X)) -> ACTIVE1(X)
The remaining pairs can at least be oriented weakly.

ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)
Used ordering: Polynomial interpretation [21]:

POL(ACTIVE1(x1)) = x12   
POL(half1(x1)) = x1   
POL(recip1(x1)) = x1   
POL(s1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
                                  ↳ QDP
                                    ↳ QDPOrderProof
QDP
                                        ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE1(half1(X)) -> ACTIVE1(X)
ACTIVE1(recip1(X)) -> ACTIVE1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE1(recip1(X)) -> ACTIVE1(X)
The remaining pairs can at least be oriented weakly.

ACTIVE1(half1(X)) -> ACTIVE1(X)
Used ordering: Polynomial interpretation [21]:

POL(ACTIVE1(x1)) = x12   
POL(half1(x1)) = x1   
POL(recip1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
                                  ↳ QDP
                                    ↳ QDPOrderProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
QDP
                                            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE1(half1(X)) -> ACTIVE1(X)

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE1(half1(X)) -> ACTIVE1(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(ACTIVE1(x1)) = x12   
POL(half1(x1)) = 1 + x12   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
                                  ↳ QDP
                                    ↳ QDPOrderProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
QDP
                                                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

TOP1(ok1(X)) -> TOP1(active1(X))
TOP1(mark1(X)) -> TOP1(proper1(X))

The TRS R consists of the following rules:

active1(terms1(N)) -> mark1(cons2(recip1(sqr1(N)), terms1(s1(N))))
active1(sqr1(0)) -> mark1(0)
active1(sqr1(s1(X))) -> mark1(s1(add2(sqr1(X), dbl1(X))))
active1(dbl1(0)) -> mark1(0)
active1(dbl1(s1(X))) -> mark1(s1(s1(dbl1(X))))
active1(add2(0, X)) -> mark1(X)
active1(add2(s1(X), Y)) -> mark1(s1(add2(X, Y)))
active1(first2(0, X)) -> mark1(nil)
active1(first2(s1(X), cons2(Y, Z))) -> mark1(cons2(Y, first2(X, Z)))
active1(half1(0)) -> mark1(0)
active1(half1(s1(0))) -> mark1(0)
active1(half1(s1(s1(X)))) -> mark1(s1(half1(X)))
active1(half1(dbl1(X))) -> mark1(X)
active1(terms1(X)) -> terms1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(recip1(X)) -> recip1(active1(X))
active1(sqr1(X)) -> sqr1(active1(X))
active1(s1(X)) -> s1(active1(X))
active1(add2(X1, X2)) -> add2(active1(X1), X2)
active1(add2(X1, X2)) -> add2(X1, active1(X2))
active1(dbl1(X)) -> dbl1(active1(X))
active1(first2(X1, X2)) -> first2(active1(X1), X2)
active1(first2(X1, X2)) -> first2(X1, active1(X2))
active1(half1(X)) -> half1(active1(X))
terms1(mark1(X)) -> mark1(terms1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
recip1(mark1(X)) -> mark1(recip1(X))
sqr1(mark1(X)) -> mark1(sqr1(X))
s1(mark1(X)) -> mark1(s1(X))
add2(mark1(X1), X2) -> mark1(add2(X1, X2))
add2(X1, mark1(X2)) -> mark1(add2(X1, X2))
dbl1(mark1(X)) -> mark1(dbl1(X))
first2(mark1(X1), X2) -> mark1(first2(X1, X2))
first2(X1, mark1(X2)) -> mark1(first2(X1, X2))
half1(mark1(X)) -> mark1(half1(X))
proper1(terms1(X)) -> terms1(proper1(X))
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(recip1(X)) -> recip1(proper1(X))
proper1(sqr1(X)) -> sqr1(proper1(X))
proper1(s1(X)) -> s1(proper1(X))
proper1(0) -> ok1(0)
proper1(add2(X1, X2)) -> add2(proper1(X1), proper1(X2))
proper1(dbl1(X)) -> dbl1(proper1(X))
proper1(first2(X1, X2)) -> first2(proper1(X1), proper1(X2))
proper1(nil) -> ok1(nil)
proper1(half1(X)) -> half1(proper1(X))
terms1(ok1(X)) -> ok1(terms1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
recip1(ok1(X)) -> ok1(recip1(X))
sqr1(ok1(X)) -> ok1(sqr1(X))
s1(ok1(X)) -> ok1(s1(X))
add2(ok1(X1), ok1(X2)) -> ok1(add2(X1, X2))
dbl1(ok1(X)) -> ok1(dbl1(X))
first2(ok1(X1), ok1(X2)) -> ok1(first2(X1, X2))
half1(ok1(X)) -> ok1(half1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.