Consider the TRS R consisting of the rewrite rules 1: f(X) -> g(n__h(n__f(X))) 2: h(X) -> n__h(X) 3: f(X) -> n__f(X) 4: activate(n__h(X)) -> h(activate(X)) 5: activate(n__f(X)) -> f(activate(X)) 6: activate(X) -> X There are 4 dependency pairs: 7: ACTIVATE(n__h(X)) -> H(activate(X)) 8: ACTIVATE(n__h(X)) -> ACTIVATE(X) 9: ACTIVATE(n__f(X)) -> F(activate(X)) 10: ACTIVATE(n__f(X)) -> ACTIVATE(X) The approximated dependency graph contains one SCC: {8,10}. - Consider the SCC {8,10}. There are no usable rules. By taking the polynomial interpretation [ACTIVATE](x) = [n__f](x) = [n__h](x) = x + 1, the rules in {8,10} are strictly decreasing. Hence the TRS is terminating.