Consider the TRS R consisting of the rewrite rules 1: from(X) -> cons(X,n__from(n__s(X))) 2: head(cons(X,XS)) -> X 3: 2nd(cons(X,XS)) -> head(activate(XS)) 4: take(0,XS) -> nil 5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) 6: sel(0,cons(X,XS)) -> X 7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) 8: from(X) -> n__from(X) 9: s(X) -> n__s(X) 10: take(X1,X2) -> n__take(X1,X2) 11: activate(n__from(X)) -> from(activate(X)) 12: activate(n__s(X)) -> s(activate(X)) 13: activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) 14: activate(X) -> X There are 12 dependency pairs: 15: 2nd#(cons(X,XS)) -> HEAD(activate(XS)) 16: 2nd#(cons(X,XS)) -> ACTIVATE(XS) 17: TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) 18: SEL(s(N),cons(X,XS)) -> SEL(N,activate(XS)) 19: SEL(s(N),cons(X,XS)) -> ACTIVATE(XS) 20: ACTIVATE(n__from(X)) -> FROM(activate(X)) 21: ACTIVATE(n__from(X)) -> ACTIVATE(X) 22: ACTIVATE(n__s(X)) -> S(activate(X)) 23: ACTIVATE(n__s(X)) -> ACTIVATE(X) 24: ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) 25: ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X1) 26: ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X2) The approximated dependency graph contains 2 SCCs: {17,21,23-26} and {18}. - Consider the SCC {17,21,23-26}. The usable rules are {1,4,5,8-14}. By taking the polynomial interpretation [0] = [nil] = 1, [activate](x) = [n__s](x) = [s](x) = x, [ACTIVATE](x) = [from](x) = [n__from](x) = x + 1, [n__take](x,y) = [take](x,y) = [TAKE](x,y) = x + y + 1 and [cons](x,y) = y, the rules in {1,5,8-14,17,23} are weakly decreasing and the rules in {4,21,24-26} are strictly decreasing. There is one new SCC. - Consider the SCC {23}. There are no usable rules. By taking the polynomial interpretation [ACTIVATE](x) = [n__s](x) = x + 1, rule 23 is strictly decreasing. - Consider the SCC {18}. The usable rules are {1,4,5,8-14}. By taking the polynomial interpretation [0] = [nil] = 1, [activate](x) = x, [cons](x,y) = [from](x) = [n__from](x) = [n__s](x) = [s](x) = [SEL](x,y) = x + 1 and [n__take](x,y) = [take](x,y) = x + y + 1, the rules in {1,8-14} are weakly decreasing and the rules in {4,5,18} are strictly decreasing. Hence the TRS is terminating.