Consider the TRS R consisting of the rewrite rules 1: 2nd(cons1(X,cons(Y,Z))) -> Y 2: 2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1))) 3: from(X) -> cons(X,n__from(n__s(X))) 4: from(X) -> n__from(X) 5: s(X) -> n__s(X) 6: activate(n__from(X)) -> from(activate(X)) 7: activate(n__s(X)) -> s(activate(X)) 8: activate(X) -> X There are 6 dependency pairs: 9: 2nd#(cons(X,X1)) -> 2nd#(cons1(X,activate(X1))) 10: 2nd#(cons(X,X1)) -> ACTIVATE(X1) 11: ACTIVATE(n__from(X)) -> FROM(activate(X)) 12: ACTIVATE(n__from(X)) -> ACTIVATE(X) 13: ACTIVATE(n__s(X)) -> S(activate(X)) 14: ACTIVATE(n__s(X)) -> ACTIVATE(X) The approximated dependency graph contains one SCC: {12,14}. - Consider the SCC {12,14}. There are no usable rules. By taking the polynomial interpretation [ACTIVATE](x) = [n__from](x) = [n__s](x) = x + 1, the rules in {12,14} are strictly decreasing. Hence the TRS is terminating.