Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

f1(X) -> if3(X, c, n__f1(true))
if3(true, X, Y) -> X
if3(false, X, Y) -> activate1(Y)
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f1(X) -> if3(X, c, n__f1(true))
if3(true, X, Y) -> X
if3(false, X, Y) -> activate1(Y)
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__f1(X)) -> F1(X)
IF3(false, X, Y) -> ACTIVATE1(Y)
F1(X) -> IF3(X, c, n__f1(true))

The TRS R consists of the following rules:

f1(X) -> if3(X, c, n__f1(true))
if3(true, X, Y) -> X
if3(false, X, Y) -> activate1(Y)
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__f1(X)) -> F1(X)
IF3(false, X, Y) -> ACTIVATE1(Y)
F1(X) -> IF3(X, c, n__f1(true))

The TRS R consists of the following rules:

f1(X) -> if3(X, c, n__f1(true))
if3(true, X, Y) -> X
if3(false, X, Y) -> activate1(Y)
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


IF3(false, X, Y) -> ACTIVATE1(Y)
The remaining pairs can at least be oriented weakly.

ACTIVATE1(n__f1(X)) -> F1(X)
F1(X) -> IF3(X, c, n__f1(true))
Used ordering: Polynomial interpretation [21]:

POL(ACTIVATE1(x1)) = x1   
POL(F1(x1)) = x1   
POL(IF3(x1, x2, x3)) = x1 + x3   
POL(c) = 0   
POL(false) = 1   
POL(n__f1(x1)) = x1   
POL(true) = 0   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__f1(X)) -> F1(X)
F1(X) -> IF3(X, c, n__f1(true))

The TRS R consists of the following rules:

f1(X) -> if3(X, c, n__f1(true))
if3(true, X, Y) -> X
if3(false, X, Y) -> activate1(Y)
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 2 less nodes.