Consider the TRS R consisting of the rewrite rules 1: from(X) -> cons(X,n__from(s(X))) 2: sel(0,cons(X,XS)) -> X 3: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) 4: minus(X,0) -> 0 5: minus(s(X),s(Y)) -> minus(X,Y) 6: quot(0,s(Y)) -> 0 7: quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) 8: zWquot(XS,nil) -> nil 9: zWquot(nil,XS) -> nil 10: zWquot(cons(X,XS),cons(Y,YS)) -> cons(quot(X,Y),n__zWquot(activate(XS),activate(YS))) 11: from(X) -> n__from(X) 12: zWquot(X1,X2) -> n__zWquot(X1,X2) 13: activate(n__from(X)) -> from(X) 14: activate(n__zWquot(X1,X2)) -> zWquot(X1,X2) 15: activate(X) -> X There are 10 dependency pairs: 16: SEL(s(N),cons(X,XS)) -> SEL(N,activate(XS)) 17: SEL(s(N),cons(X,XS)) -> ACTIVATE(XS) 18: MINUS(s(X),s(Y)) -> MINUS(X,Y) 19: QUOT(s(X),s(Y)) -> QUOT(minus(X,Y),s(Y)) 20: QUOT(s(X),s(Y)) -> MINUS(X,Y) 21: ZWQUOT(cons(X,XS),cons(Y,YS)) -> QUOT(X,Y) 22: ZWQUOT(cons(X,XS),cons(Y,YS)) -> ACTIVATE(XS) 23: ZWQUOT(cons(X,XS),cons(Y,YS)) -> ACTIVATE(YS) 24: ACTIVATE(n__from(X)) -> FROM(X) 25: ACTIVATE(n__zWquot(X1,X2)) -> ZWQUOT(X1,X2) The approximated dependency graph contains 4 SCCs: {18}, {19}, {22,23,25} and {16}. - Consider the SCC {18}. There are no usable rules. By taking the polynomial interpretation [s](x) = x + 1 and [MINUS](x,y) = x + y + 1, rule 18 is strictly decreasing. - Consider the SCC {19}. The usable rules are {4,5}. By taking the polynomial interpretation [0] = 0, [minus](x,y) = x, [s](x) = x + 1 and [QUOT](x,y) = x + y + 1, rule 4 is weakly decreasing and the rules in {5,19} are strictly decreasing. - Consider the SCC {22,23,25}. There are no usable rules. By taking the polynomial interpretation [ACTIVATE](x) = x + 1 and [cons](x,y) = [n__zWquot](x,y) = [ZWQUOT](x,y) = x + y + 1, the rules in {22,23,25} are strictly decreasing. - Consider the SCC {16}. The usable rules are {1,4-15}. By taking the polynomial interpretation [0] = 0, [nil] = 1, [minus](x,y) = x, [activate](x) = [cons](x,y) = [from](x) = [n__from](x) = [s](x) = [SEL](x,y) = x + 1 and [n__zWquot](x,y) = [quot](x,y) = [zWquot](x,y) = x + y + 1, the rules in {1,4,7,11,12} are weakly decreasing and the rules in {5,6,8-10,13-16} are strictly decreasing. Hence the TRS is terminating.