Consider the TRS R consisting of the rewrite rules 1: a__fst(0,Z) -> nil 2: a__fst(s(X),cons(Y,Z)) -> cons(mark(Y),fst(X,Z)) 3: a__from(X) -> cons(mark(X),from(s(X))) 4: a__add(0,X) -> mark(X) 5: a__add(s(X),Y) -> s(add(X,Y)) 6: a__len(nil) -> 0 7: a__len(cons(X,Z)) -> s(len(Z)) 8: mark(fst(X1,X2)) -> a__fst(mark(X1),mark(X2)) 9: mark(from(X)) -> a__from(mark(X)) 10: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) 11: mark(len(X)) -> a__len(mark(X)) 12: mark(0) -> 0 13: mark(s(X)) -> s(X) 14: mark(nil) -> nil 15: mark(cons(X1,X2)) -> cons(mark(X1),X2) 16: a__fst(X1,X2) -> fst(X1,X2) 17: a__from(X) -> from(X) 18: a__add(X1,X2) -> add(X1,X2) 19: a__len(X) -> len(X) There are 14 dependency pairs: 20: A__FST(s(X),cons(Y,Z)) -> MARK(Y) 21: A__FROM(X) -> MARK(X) 22: A__ADD(0,X) -> MARK(X) 23: MARK(fst(X1,X2)) -> A__FST(mark(X1),mark(X2)) 24: MARK(fst(X1,X2)) -> MARK(X1) 25: MARK(fst(X1,X2)) -> MARK(X2) 26: MARK(from(X)) -> A__FROM(mark(X)) 27: MARK(from(X)) -> MARK(X) 28: MARK(add(X1,X2)) -> A__ADD(mark(X1),mark(X2)) 29: MARK(add(X1,X2)) -> MARK(X1) 30: MARK(add(X1,X2)) -> MARK(X2) 31: MARK(len(X)) -> A__LEN(mark(X)) 32: MARK(len(X)) -> MARK(X) 33: MARK(cons(X1,X2)) -> MARK(X1) The approximated dependency graph contains one SCC: {20-30,32,33}. - Consider the SCC {20-30,32,33}. By taking the polynomial interpretation [0] = [nil] = [s](x) = 1, [mark](x) = x, [a__from](x) = [A__FROM](x) = [a__len](x) = [cons](x,y) = [from](x) = [len](x) = [MARK](x) = x + 1 and [a__add](x,y) = [A__ADD](x,y) = [a__fst](x,y) = [A__FST](x,y) = [add](x,y) = [fst](x,y) = x + y + 1, the rules in {3,8-19,21} are weakly decreasing and the rules in {1,2,4-7,20,22-30,32,33} are strictly decreasing. Hence the TRS is terminating.