Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
fst2(0, Z) -> nil
fst2(s1(X), cons2(Y, Z)) -> cons2(Y, n__fst2(activate1(X), activate1(Z)))
from1(X) -> cons2(X, n__from1(n__s1(X)))
add2(0, X) -> X
add2(s1(X), Y) -> s1(n__add2(activate1(X), Y))
len1(nil) -> 0
len1(cons2(X, Z)) -> s1(n__len1(activate1(Z)))
fst2(X1, X2) -> n__fst2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
add2(X1, X2) -> n__add2(X1, X2)
len1(X) -> n__len1(X)
activate1(n__fst2(X1, X2)) -> fst2(activate1(X1), activate1(X2))
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(X)
activate1(n__add2(X1, X2)) -> add2(activate1(X1), activate1(X2))
activate1(n__len1(X)) -> len1(activate1(X))
activate1(X) -> X
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
fst2(0, Z) -> nil
fst2(s1(X), cons2(Y, Z)) -> cons2(Y, n__fst2(activate1(X), activate1(Z)))
from1(X) -> cons2(X, n__from1(n__s1(X)))
add2(0, X) -> X
add2(s1(X), Y) -> s1(n__add2(activate1(X), Y))
len1(nil) -> 0
len1(cons2(X, Z)) -> s1(n__len1(activate1(Z)))
fst2(X1, X2) -> n__fst2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
add2(X1, X2) -> n__add2(X1, X2)
len1(X) -> n__len1(X)
activate1(n__fst2(X1, X2)) -> fst2(activate1(X1), activate1(X2))
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(X)
activate1(n__add2(X1, X2)) -> add2(activate1(X1), activate1(X2))
activate1(n__len1(X)) -> len1(activate1(X))
activate1(X) -> X
Q is empty.
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
FST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(X)
ACTIVATE1(n__add2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__s1(X)) -> S1(X)
ACTIVATE1(n__fst2(X1, X2)) -> ACTIVATE1(X1)
FST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__len1(X)) -> LEN1(activate1(X))
ACTIVATE1(n__add2(X1, X2)) -> ADD2(activate1(X1), activate1(X2))
LEN1(cons2(X, Z)) -> S1(n__len1(activate1(Z)))
ACTIVATE1(n__from1(X)) -> FROM1(activate1(X))
ACTIVATE1(n__fst2(X1, X2)) -> ACTIVATE1(X2)
ADD2(s1(X), Y) -> ACTIVATE1(X)
ACTIVATE1(n__fst2(X1, X2)) -> FST2(activate1(X1), activate1(X2))
ACTIVATE1(n__len1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ADD2(s1(X), Y) -> S1(n__add2(activate1(X), Y))
LEN1(cons2(X, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__add2(X1, X2)) -> ACTIVATE1(X1)
The TRS R consists of the following rules:
fst2(0, Z) -> nil
fst2(s1(X), cons2(Y, Z)) -> cons2(Y, n__fst2(activate1(X), activate1(Z)))
from1(X) -> cons2(X, n__from1(n__s1(X)))
add2(0, X) -> X
add2(s1(X), Y) -> s1(n__add2(activate1(X), Y))
len1(nil) -> 0
len1(cons2(X, Z)) -> s1(n__len1(activate1(Z)))
fst2(X1, X2) -> n__fst2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
add2(X1, X2) -> n__add2(X1, X2)
len1(X) -> n__len1(X)
activate1(n__fst2(X1, X2)) -> fst2(activate1(X1), activate1(X2))
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(X)
activate1(n__add2(X1, X2)) -> add2(activate1(X1), activate1(X2))
activate1(n__len1(X)) -> len1(activate1(X))
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
FST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(X)
ACTIVATE1(n__add2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__s1(X)) -> S1(X)
ACTIVATE1(n__fst2(X1, X2)) -> ACTIVATE1(X1)
FST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__len1(X)) -> LEN1(activate1(X))
ACTIVATE1(n__add2(X1, X2)) -> ADD2(activate1(X1), activate1(X2))
LEN1(cons2(X, Z)) -> S1(n__len1(activate1(Z)))
ACTIVATE1(n__from1(X)) -> FROM1(activate1(X))
ACTIVATE1(n__fst2(X1, X2)) -> ACTIVATE1(X2)
ADD2(s1(X), Y) -> ACTIVATE1(X)
ACTIVATE1(n__fst2(X1, X2)) -> FST2(activate1(X1), activate1(X2))
ACTIVATE1(n__len1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ADD2(s1(X), Y) -> S1(n__add2(activate1(X), Y))
LEN1(cons2(X, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__add2(X1, X2)) -> ACTIVATE1(X1)
The TRS R consists of the following rules:
fst2(0, Z) -> nil
fst2(s1(X), cons2(Y, Z)) -> cons2(Y, n__fst2(activate1(X), activate1(Z)))
from1(X) -> cons2(X, n__from1(n__s1(X)))
add2(0, X) -> X
add2(s1(X), Y) -> s1(n__add2(activate1(X), Y))
len1(nil) -> 0
len1(cons2(X, Z)) -> s1(n__len1(activate1(Z)))
fst2(X1, X2) -> n__fst2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
add2(X1, X2) -> n__add2(X1, X2)
len1(X) -> n__len1(X)
activate1(n__fst2(X1, X2)) -> fst2(activate1(X1), activate1(X2))
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(X)
activate1(n__add2(X1, X2)) -> add2(activate1(X1), activate1(X2))
activate1(n__len1(X)) -> len1(activate1(X))
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 4 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
FST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(X)
ACTIVATE1(n__add2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__fst2(X1, X2)) -> ACTIVATE1(X1)
FST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__add2(X1, X2)) -> ADD2(activate1(X1), activate1(X2))
ACTIVATE1(n__len1(X)) -> LEN1(activate1(X))
ACTIVATE1(n__fst2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__fst2(X1, X2)) -> FST2(activate1(X1), activate1(X2))
ADD2(s1(X), Y) -> ACTIVATE1(X)
ACTIVATE1(n__len1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
LEN1(cons2(X, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__add2(X1, X2)) -> ACTIVATE1(X1)
The TRS R consists of the following rules:
fst2(0, Z) -> nil
fst2(s1(X), cons2(Y, Z)) -> cons2(Y, n__fst2(activate1(X), activate1(Z)))
from1(X) -> cons2(X, n__from1(n__s1(X)))
add2(0, X) -> X
add2(s1(X), Y) -> s1(n__add2(activate1(X), Y))
len1(nil) -> 0
len1(cons2(X, Z)) -> s1(n__len1(activate1(Z)))
fst2(X1, X2) -> n__fst2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
add2(X1, X2) -> n__add2(X1, X2)
len1(X) -> n__len1(X)
activate1(n__fst2(X1, X2)) -> fst2(activate1(X1), activate1(X2))
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(X)
activate1(n__add2(X1, X2)) -> add2(activate1(X1), activate1(X2))
activate1(n__len1(X)) -> len1(activate1(X))
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.