Consider the TRS R consisting of the rewrite rules 1: terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N))) 2: sqr(0) -> 0 3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) 4: dbl(0) -> 0 5: dbl(s(X)) -> s(s(dbl(X))) 6: add(0,X) -> X 7: add(s(X),Y) -> s(add(X,Y)) 8: first(0,X) -> nil 9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) 10: terms(X) -> n__terms(X) 11: s(X) -> n__s(X) 12: first(X1,X2) -> n__first(X1,X2) 13: activate(n__terms(X)) -> terms(activate(X)) 14: activate(n__s(X)) -> s(activate(X)) 15: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) 16: activate(X) -> X There are 18 dependency pairs: 17: TERMS(N) -> SQR(N) 18: SQR(s(X)) -> S(add(sqr(X),dbl(X))) 19: SQR(s(X)) -> ADD(sqr(X),dbl(X)) 20: SQR(s(X)) -> SQR(X) 21: SQR(s(X)) -> DBL(X) 22: DBL(s(X)) -> S(s(dbl(X))) 23: DBL(s(X)) -> S(dbl(X)) 24: DBL(s(X)) -> DBL(X) 25: ADD(s(X),Y) -> S(add(X,Y)) 26: ADD(s(X),Y) -> ADD(X,Y) 27: FIRST(s(X),cons(Y,Z)) -> ACTIVATE(Z) 28: ACTIVATE(n__terms(X)) -> TERMS(activate(X)) 29: ACTIVATE(n__terms(X)) -> ACTIVATE(X) 30: ACTIVATE(n__s(X)) -> S(activate(X)) 31: ACTIVATE(n__s(X)) -> ACTIVATE(X) 32: ACTIVATE(n__first(X1,X2)) -> FIRST(activate(X1),activate(X2)) 33: ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X1) 34: ACTIVATE(n__first(X1,X2)) -> ACTIVATE(X2) The approximated dependency graph contains 4 SCCs: {26}, {24}, {20} and {27,29,31-34}. - Consider the SCC {26}. There are no usable rules. By taking the polynomial interpretation [s](x) = x + 1 and [ADD](x,y) = x + y + 1, rule 26 is strictly decreasing. - Consider the SCC {24}. There are no usable rules. By taking the polynomial interpretation [DBL](x) = [s](x) = x + 1, rule 24 is strictly decreasing. - Consider the SCC {20}. There are no usable rules. By taking the polynomial interpretation [s](x) = [SQR](x) = x + 1, rule 20 is strictly decreasing. - Consider the SCC {27,29,31-34}. By taking the polynomial interpretation [recip](x) = 0, [0] = [nil] = 1, [activate](x) = [dbl](x) = [n__s](x) = [s](x) = x, [ACTIVATE](x) = [n__terms](x) = [sqr](x) = [terms](x) = x + 1, [cons](x,y) = x + y, [first](x,y) = [FIRST](x,y) = [n__first](x,y) = x + y + 1 and [add](x,y) = y + 1, the rules in {1,3-5,7,9-16,27,31} are weakly decreasing and the rules in {2,6,8,29,32-34} are strictly decreasing. There is one new SCC. - Consider the SCC {31}. There are no usable rules. By taking the polynomial interpretation [ACTIVATE](x) = [n__s](x) = x + 1, rule 31 is strictly decreasing. Hence the TRS is terminating.