Consider the TRS R consisting of the rewrite rules 1: a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N))) 2: a__sqr(0) -> 0 3: a__sqr(s(X)) -> s(add(sqr(X),dbl(X))) 4: a__dbl(0) -> 0 5: a__dbl(s(X)) -> s(s(dbl(X))) 6: a__add(0,X) -> mark(X) 7: a__add(s(X),Y) -> s(add(X,Y)) 8: a__first(0,X) -> nil 9: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) 10: mark(terms(X)) -> a__terms(mark(X)) 11: mark(sqr(X)) -> a__sqr(mark(X)) 12: mark(add(X1,X2)) -> a__add(mark(X1),mark(X2)) 13: mark(dbl(X)) -> a__dbl(mark(X)) 14: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) 15: mark(cons(X1,X2)) -> cons(mark(X1),X2) 16: mark(recip(X)) -> recip(mark(X)) 17: mark(s(X)) -> s(X) 18: mark(0) -> 0 19: mark(nil) -> nil 20: a__terms(X) -> terms(X) 21: a__sqr(X) -> sqr(X) 22: a__add(X1,X2) -> add(X1,X2) 23: a__dbl(X) -> dbl(X) 24: a__first(X1,X2) -> first(X1,X2) There are 18 dependency pairs: 25: A__TERMS(N) -> A__SQR(mark(N)) 26: A__TERMS(N) -> MARK(N) 27: A__ADD(0,X) -> MARK(X) 28: A__FIRST(s(X),cons(Y,Z)) -> MARK(Y) 29: MARK(terms(X)) -> A__TERMS(mark(X)) 30: MARK(terms(X)) -> MARK(X) 31: MARK(sqr(X)) -> A__SQR(mark(X)) 32: MARK(sqr(X)) -> MARK(X) 33: MARK(add(X1,X2)) -> A__ADD(mark(X1),mark(X2)) 34: MARK(add(X1,X2)) -> MARK(X1) 35: MARK(add(X1,X2)) -> MARK(X2) 36: MARK(dbl(X)) -> A__DBL(mark(X)) 37: MARK(dbl(X)) -> MARK(X) 38: MARK(first(X1,X2)) -> A__FIRST(mark(X1),mark(X2)) 39: MARK(first(X1,X2)) -> MARK(X1) 40: MARK(first(X1,X2)) -> MARK(X2) 41: MARK(cons(X1,X2)) -> MARK(X1) 42: MARK(recip(X)) -> MARK(X) The approximated dependency graph contains one SCC: {26-30,32-35,37-42}. - Consider the SCC {26-30,32-35,37-42}. By taking the polynomial interpretation [0] = [nil] = [s](x) = 1, [cons](x,y) = [mark](x) = [recip](x) = x, [a__dbl](x) = [a__sqr](x) = [a__terms](x) = [A__TERMS](x) = [dbl](x) = [MARK](x) = [sqr](x) = [terms](x) = x + 1 and [a__add](x,y) = [A__ADD](x,y) = [a__first](x,y) = [A__FIRST](x,y) = [add](x,y) = [first](x,y) = x + y + 1, the rules in {1,10-24,26,41,42} are weakly decreasing and the rules in {2-9,27-30,32-35,37-40} are strictly decreasing. There is one new SCC. - Consider the SCC {41,42}. There are no usable rules. By taking the polynomial interpretation [MARK](x) = [recip](x) = x + 1 and [cons](x,y) = x + y + 1, the rules in {41,42} are strictly decreasing. Hence the TRS is terminating.