Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__p1(0) -> 0
a__p1(s1(X)) -> mark1(X)
a__leq2(0, Y) -> true
a__leq2(s1(X), 0) -> false
a__leq2(s1(X), s1(Y)) -> a__leq2(mark1(X), mark1(Y))
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
a__diff2(X, Y) -> a__if3(a__leq2(mark1(X), mark1(Y)), 0, s1(diff2(p1(X), Y)))
mark1(p1(X)) -> a__p1(mark1(X))
mark1(leq2(X1, X2)) -> a__leq2(mark1(X1), mark1(X2))
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(diff2(X1, X2)) -> a__diff2(mark1(X1), mark1(X2))
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__p1(X) -> p1(X)
a__leq2(X1, X2) -> leq2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
a__diff2(X1, X2) -> diff2(X1, X2)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__p1(0) -> 0
a__p1(s1(X)) -> mark1(X)
a__leq2(0, Y) -> true
a__leq2(s1(X), 0) -> false
a__leq2(s1(X), s1(Y)) -> a__leq2(mark1(X), mark1(Y))
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
a__diff2(X, Y) -> a__if3(a__leq2(mark1(X), mark1(Y)), 0, s1(diff2(p1(X), Y)))
mark1(p1(X)) -> a__p1(mark1(X))
mark1(leq2(X1, X2)) -> a__leq2(mark1(X1), mark1(X2))
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(diff2(X1, X2)) -> a__diff2(mark1(X1), mark1(X2))
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__p1(X) -> p1(X)
a__leq2(X1, X2) -> leq2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
a__diff2(X1, X2) -> diff2(X1, X2)
Q is empty.
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
MARK1(diff2(X1, X2)) -> MARK1(X2)
MARK1(diff2(X1, X2)) -> A__DIFF2(mark1(X1), mark1(X2))
A__LEQ2(s1(X), s1(Y)) -> MARK1(X)
A__DIFF2(X, Y) -> A__IF3(a__leq2(mark1(X), mark1(Y)), 0, s1(diff2(p1(X), Y)))
A__LEQ2(s1(X), s1(Y)) -> A__LEQ2(mark1(X), mark1(Y))
MARK1(diff2(X1, X2)) -> MARK1(X1)
A__IF3(false, X, Y) -> MARK1(Y)
A__DIFF2(X, Y) -> A__LEQ2(mark1(X), mark1(Y))
MARK1(p1(X)) -> A__P1(mark1(X))
MARK1(leq2(X1, X2)) -> A__LEQ2(mark1(X1), mark1(X2))
A__DIFF2(X, Y) -> MARK1(X)
MARK1(if3(X1, X2, X3)) -> MARK1(X1)
A__DIFF2(X, Y) -> MARK1(Y)
MARK1(s1(X)) -> MARK1(X)
MARK1(leq2(X1, X2)) -> MARK1(X2)
MARK1(leq2(X1, X2)) -> MARK1(X1)
A__LEQ2(s1(X), s1(Y)) -> MARK1(Y)
A__IF3(true, X, Y) -> MARK1(X)
A__P1(s1(X)) -> MARK1(X)
MARK1(if3(X1, X2, X3)) -> A__IF3(mark1(X1), X2, X3)
MARK1(p1(X)) -> MARK1(X)
The TRS R consists of the following rules:
a__p1(0) -> 0
a__p1(s1(X)) -> mark1(X)
a__leq2(0, Y) -> true
a__leq2(s1(X), 0) -> false
a__leq2(s1(X), s1(Y)) -> a__leq2(mark1(X), mark1(Y))
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
a__diff2(X, Y) -> a__if3(a__leq2(mark1(X), mark1(Y)), 0, s1(diff2(p1(X), Y)))
mark1(p1(X)) -> a__p1(mark1(X))
mark1(leq2(X1, X2)) -> a__leq2(mark1(X1), mark1(X2))
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(diff2(X1, X2)) -> a__diff2(mark1(X1), mark1(X2))
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__p1(X) -> p1(X)
a__leq2(X1, X2) -> leq2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
a__diff2(X1, X2) -> diff2(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MARK1(diff2(X1, X2)) -> MARK1(X2)
MARK1(diff2(X1, X2)) -> A__DIFF2(mark1(X1), mark1(X2))
A__LEQ2(s1(X), s1(Y)) -> MARK1(X)
A__DIFF2(X, Y) -> A__IF3(a__leq2(mark1(X), mark1(Y)), 0, s1(diff2(p1(X), Y)))
A__LEQ2(s1(X), s1(Y)) -> A__LEQ2(mark1(X), mark1(Y))
MARK1(diff2(X1, X2)) -> MARK1(X1)
A__IF3(false, X, Y) -> MARK1(Y)
A__DIFF2(X, Y) -> A__LEQ2(mark1(X), mark1(Y))
MARK1(p1(X)) -> A__P1(mark1(X))
MARK1(leq2(X1, X2)) -> A__LEQ2(mark1(X1), mark1(X2))
A__DIFF2(X, Y) -> MARK1(X)
MARK1(if3(X1, X2, X3)) -> MARK1(X1)
A__DIFF2(X, Y) -> MARK1(Y)
MARK1(s1(X)) -> MARK1(X)
MARK1(leq2(X1, X2)) -> MARK1(X2)
MARK1(leq2(X1, X2)) -> MARK1(X1)
A__LEQ2(s1(X), s1(Y)) -> MARK1(Y)
A__IF3(true, X, Y) -> MARK1(X)
A__P1(s1(X)) -> MARK1(X)
MARK1(if3(X1, X2, X3)) -> A__IF3(mark1(X1), X2, X3)
MARK1(p1(X)) -> MARK1(X)
The TRS R consists of the following rules:
a__p1(0) -> 0
a__p1(s1(X)) -> mark1(X)
a__leq2(0, Y) -> true
a__leq2(s1(X), 0) -> false
a__leq2(s1(X), s1(Y)) -> a__leq2(mark1(X), mark1(Y))
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
a__diff2(X, Y) -> a__if3(a__leq2(mark1(X), mark1(Y)), 0, s1(diff2(p1(X), Y)))
mark1(p1(X)) -> a__p1(mark1(X))
mark1(leq2(X1, X2)) -> a__leq2(mark1(X1), mark1(X2))
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(diff2(X1, X2)) -> a__diff2(mark1(X1), mark1(X2))
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__p1(X) -> p1(X)
a__leq2(X1, X2) -> leq2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
a__diff2(X1, X2) -> diff2(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.