p1(0) -> 0
p1(s1(X)) -> X
leq2(0, Y) -> true
leq2(s1(X), 0) -> false
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
0 -> n__0
s1(X) -> n__s1(X)
diff2(X1, X2) -> n__diff2(X1, X2)
p1(X) -> n__p1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__diff2(X1, X2)) -> diff2(activate1(X1), activate1(X2))
activate1(n__p1(X)) -> p1(activate1(X))
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
p1(0) -> 0
p1(s1(X)) -> X
leq2(0, Y) -> true
leq2(s1(X), 0) -> false
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
0 -> n__0
s1(X) -> n__s1(X)
diff2(X1, X2) -> n__diff2(X1, X2)
p1(X) -> n__p1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__diff2(X1, X2)) -> diff2(activate1(X1), activate1(X2))
activate1(n__p1(X)) -> p1(activate1(X))
activate1(X) -> X
ACTIVATE1(n__0) -> 01
DIFF2(X, Y) -> IF3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
IF3(true, X, Y) -> ACTIVATE1(X)
ACTIVATE1(n__diff2(X1, X2)) -> DIFF2(activate1(X1), activate1(X2))
DIFF2(X, Y) -> LEQ2(X, Y)
ACTIVATE1(n__diff2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
ACTIVATE1(n__p1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__diff2(X1, X2)) -> ACTIVATE1(X2)
LEQ2(s1(X), s1(Y)) -> LEQ2(X, Y)
IF3(false, X, Y) -> ACTIVATE1(Y)
ACTIVATE1(n__p1(X)) -> P1(activate1(X))
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
p1(0) -> 0
p1(s1(X)) -> X
leq2(0, Y) -> true
leq2(s1(X), 0) -> false
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
0 -> n__0
s1(X) -> n__s1(X)
diff2(X1, X2) -> n__diff2(X1, X2)
p1(X) -> n__p1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__diff2(X1, X2)) -> diff2(activate1(X1), activate1(X2))
activate1(n__p1(X)) -> p1(activate1(X))
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ACTIVATE1(n__0) -> 01
DIFF2(X, Y) -> IF3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
IF3(true, X, Y) -> ACTIVATE1(X)
ACTIVATE1(n__diff2(X1, X2)) -> DIFF2(activate1(X1), activate1(X2))
DIFF2(X, Y) -> LEQ2(X, Y)
ACTIVATE1(n__diff2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
ACTIVATE1(n__p1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__diff2(X1, X2)) -> ACTIVATE1(X2)
LEQ2(s1(X), s1(Y)) -> LEQ2(X, Y)
IF3(false, X, Y) -> ACTIVATE1(Y)
ACTIVATE1(n__p1(X)) -> P1(activate1(X))
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
p1(0) -> 0
p1(s1(X)) -> X
leq2(0, Y) -> true
leq2(s1(X), 0) -> false
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
0 -> n__0
s1(X) -> n__s1(X)
diff2(X1, X2) -> n__diff2(X1, X2)
p1(X) -> n__p1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__diff2(X1, X2)) -> diff2(activate1(X1), activate1(X2))
activate1(n__p1(X)) -> p1(activate1(X))
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
LEQ2(s1(X), s1(Y)) -> LEQ2(X, Y)
p1(0) -> 0
p1(s1(X)) -> X
leq2(0, Y) -> true
leq2(s1(X), 0) -> false
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
0 -> n__0
s1(X) -> n__s1(X)
diff2(X1, X2) -> n__diff2(X1, X2)
p1(X) -> n__p1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__diff2(X1, X2)) -> diff2(activate1(X1), activate1(X2))
activate1(n__p1(X)) -> p1(activate1(X))
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LEQ2(s1(X), s1(Y)) -> LEQ2(X, Y)
POL(LEQ2(x1, x2)) = x1·x2
POL(s1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
p1(0) -> 0
p1(s1(X)) -> X
leq2(0, Y) -> true
leq2(s1(X), 0) -> false
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
0 -> n__0
s1(X) -> n__s1(X)
diff2(X1, X2) -> n__diff2(X1, X2)
p1(X) -> n__p1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__diff2(X1, X2)) -> diff2(activate1(X1), activate1(X2))
activate1(n__p1(X)) -> p1(activate1(X))
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
ACTIVATE1(n__diff2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__p1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__diff2(X1, X2)) -> ACTIVATE1(X2)
DIFF2(X, Y) -> IF3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
IF3(false, X, Y) -> ACTIVATE1(Y)
IF3(true, X, Y) -> ACTIVATE1(X)
ACTIVATE1(n__diff2(X1, X2)) -> DIFF2(activate1(X1), activate1(X2))
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
p1(0) -> 0
p1(s1(X)) -> X
leq2(0, Y) -> true
leq2(s1(X), 0) -> false
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
0 -> n__0
s1(X) -> n__s1(X)
diff2(X1, X2) -> n__diff2(X1, X2)
p1(X) -> n__p1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__diff2(X1, X2)) -> diff2(activate1(X1), activate1(X2))
activate1(n__p1(X)) -> p1(activate1(X))
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE1(n__diff2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__diff2(X1, X2)) -> ACTIVATE1(X2)
Used ordering: Polynomial interpretation [21]:
ACTIVATE1(n__p1(X)) -> ACTIVATE1(X)
DIFF2(X, Y) -> IF3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
IF3(false, X, Y) -> ACTIVATE1(Y)
IF3(true, X, Y) -> ACTIVATE1(X)
ACTIVATE1(n__diff2(X1, X2)) -> DIFF2(activate1(X1), activate1(X2))
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
POL(0) = 0
POL(ACTIVATE1(x1)) = x1
POL(DIFF2(x1, x2)) = 1 + x1 + x2
POL(IF3(x1, x2, x3)) = x1·x2 + x1·x3
POL(activate1(x1)) = x1
POL(diff2(x1, x2)) = 1 + x1 + x2
POL(false) = 1
POL(if3(x1, x2, x3)) = x1·x2 + x1·x3
POL(leq2(x1, x2)) = 1
POL(n__0) = 0
POL(n__diff2(x1, x2)) = 1 + x1 + x2
POL(n__p1(x1)) = x1
POL(n__s1(x1)) = x1
POL(p1(x1)) = x1
POL(s1(x1)) = x1
POL(true) = 1
0 -> n__0
leq2(0, Y) -> true
activate1(n__0) -> 0
s1(X) -> n__s1(X)
p1(0) -> 0
activate1(X) -> X
activate1(n__s1(X)) -> s1(activate1(X))
diff2(X1, X2) -> n__diff2(X1, X2)
p1(s1(X)) -> X
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(false, X, Y) -> activate1(Y)
if3(true, X, Y) -> activate1(X)
activate1(n__diff2(X1, X2)) -> diff2(activate1(X1), activate1(X2))
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
p1(X) -> n__p1(X)
activate1(n__p1(X)) -> p1(activate1(X))
leq2(s1(X), 0) -> false
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
ACTIVATE1(n__p1(X)) -> ACTIVATE1(X)
DIFF2(X, Y) -> IF3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
IF3(false, X, Y) -> ACTIVATE1(Y)
IF3(true, X, Y) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__diff2(X1, X2)) -> DIFF2(activate1(X1), activate1(X2))
p1(0) -> 0
p1(s1(X)) -> X
leq2(0, Y) -> true
leq2(s1(X), 0) -> false
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
0 -> n__0
s1(X) -> n__s1(X)
diff2(X1, X2) -> n__diff2(X1, X2)
p1(X) -> n__p1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__diff2(X1, X2)) -> diff2(activate1(X1), activate1(X2))
activate1(n__p1(X)) -> p1(activate1(X))
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE1(n__p1(X)) -> ACTIVATE1(X)
Used ordering: Polynomial interpretation [21]:
DIFF2(X, Y) -> IF3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
IF3(false, X, Y) -> ACTIVATE1(Y)
IF3(true, X, Y) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__diff2(X1, X2)) -> DIFF2(activate1(X1), activate1(X2))
POL(0) = 1
POL(ACTIVATE1(x1)) = x1
POL(DIFF2(x1, x2)) = 0
POL(IF3(x1, x2, x3)) = x1·x2 + x1·x3
POL(activate1(x1)) = 0
POL(diff2(x1, x2)) = 0
POL(false) = 1
POL(if3(x1, x2, x3)) = 0
POL(leq2(x1, x2)) = x1
POL(n__0) = 0
POL(n__diff2(x1, x2)) = 0
POL(n__p1(x1)) = 1 + x1
POL(n__s1(x1)) = x1
POL(p1(x1)) = 0
POL(s1(x1)) = 1 + x1
POL(true) = 1
leq2(0, Y) -> true
leq2(s1(X), s1(Y)) -> leq2(X, Y)
leq2(s1(X), 0) -> false
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
DIFF2(X, Y) -> IF3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
IF3(false, X, Y) -> ACTIVATE1(Y)
IF3(true, X, Y) -> ACTIVATE1(X)
ACTIVATE1(n__diff2(X1, X2)) -> DIFF2(activate1(X1), activate1(X2))
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
p1(0) -> 0
p1(s1(X)) -> X
leq2(0, Y) -> true
leq2(s1(X), 0) -> false
leq2(s1(X), s1(Y)) -> leq2(X, Y)
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
diff2(X, Y) -> if3(leq2(X, Y), n__0, n__s1(n__diff2(n__p1(X), Y)))
0 -> n__0
s1(X) -> n__s1(X)
diff2(X1, X2) -> n__diff2(X1, X2)
p1(X) -> n__p1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__diff2(X1, X2)) -> diff2(activate1(X1), activate1(X2))
activate1(n__p1(X)) -> p1(activate1(X))
activate1(X) -> X