Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

2nd1(cons2(X, n__cons2(Y, Z))) -> activate1(Y)
from1(X) -> cons2(X, n__from1(s1(X)))
cons2(X1, X2) -> n__cons2(X1, X2)
from1(X) -> n__from1(X)
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(X) -> X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

2nd1(cons2(X, n__cons2(Y, Z))) -> activate1(Y)
from1(X) -> cons2(X, n__from1(s1(X)))
cons2(X1, X2) -> n__cons2(X1, X2)
from1(X) -> n__from1(X)
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(X) -> X

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__cons2(X1, X2)) -> CONS2(X1, X2)
2ND1(cons2(X, n__cons2(Y, Z))) -> ACTIVATE1(Y)
ACTIVATE1(n__from1(X)) -> FROM1(X)
FROM1(X) -> CONS2(X, n__from1(s1(X)))

The TRS R consists of the following rules:

2nd1(cons2(X, n__cons2(Y, Z))) -> activate1(Y)
from1(X) -> cons2(X, n__from1(s1(X)))
cons2(X1, X2) -> n__cons2(X1, X2)
from1(X) -> n__from1(X)
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__cons2(X1, X2)) -> CONS2(X1, X2)
2ND1(cons2(X, n__cons2(Y, Z))) -> ACTIVATE1(Y)
ACTIVATE1(n__from1(X)) -> FROM1(X)
FROM1(X) -> CONS2(X, n__from1(s1(X)))

The TRS R consists of the following rules:

2nd1(cons2(X, n__cons2(Y, Z))) -> activate1(Y)
from1(X) -> cons2(X, n__from1(s1(X)))
cons2(X1, X2) -> n__cons2(X1, X2)
from1(X) -> n__from1(X)
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 4 less nodes.