Consider the TRS R consisting of the rewrite rules 1: 2nd(cons(X,n__cons(Y,Z))) -> activate(Y) 2: from(X) -> cons(X,n__from(n__s(X))) 3: cons(X1,X2) -> n__cons(X1,X2) 4: from(X) -> n__from(X) 5: s(X) -> n__s(X) 6: activate(n__cons(X1,X2)) -> cons(activate(X1),X2) 7: activate(n__from(X)) -> from(activate(X)) 8: activate(n__s(X)) -> s(activate(X)) 9: activate(X) -> X There are 8 dependency pairs: 10: 2nd#(cons(X,n__cons(Y,Z))) -> ACTIVATE(Y) 11: FROM(X) -> CONS(X,n__from(n__s(X))) 12: ACTIVATE(n__cons(X1,X2)) -> CONS(activate(X1),X2) 13: ACTIVATE(n__cons(X1,X2)) -> ACTIVATE(X1) 14: ACTIVATE(n__from(X)) -> FROM(activate(X)) 15: ACTIVATE(n__from(X)) -> ACTIVATE(X) 16: ACTIVATE(n__s(X)) -> S(activate(X)) 17: ACTIVATE(n__s(X)) -> ACTIVATE(X) The approximated dependency graph contains one SCC: {13,15,17}. - Consider the SCC {13,15,17}. There are no usable rules. By taking the polynomial interpretation [ACTIVATE](x) = [n__from](x) = [n__s](x) = x + 1 and [n__cons](x,y) = x + y + 1, the rules in {13,15,17} are strictly decreasing. Hence the TRS is terminating.