Consider the TRS R consisting of the rewrite rules 1: from(X) -> cons(X,n__from(s(X))) 2: 2ndspos(0,Z) -> rnil 3: 2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z))) 4: 2ndsneg(0,Z) -> rnil 5: 2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z))) 6: pi(X) -> 2ndspos(X,from(0)) 7: plus(0,Y) -> Y 8: plus(s(X),Y) -> s(plus(X,Y)) 9: times(0,Y) -> 0 10: times(s(X),Y) -> plus(Y,times(X,Y)) 11: square(X) -> times(X,X) 12: from(X) -> n__from(X) 13: cons(X1,X2) -> n__cons(X1,X2) 14: activate(n__from(X)) -> from(X) 15: activate(n__cons(X1,X2)) -> cons(X1,X2) 16: activate(X) -> X There are 15 dependency pairs: 17: FROM(X) -> CONS(X,n__from(s(X))) 18: 2ndspos#(s(N),cons(X,n__cons(Y,Z))) -> ACTIVATE(Y) 19: 2ndspos#(s(N),cons(X,n__cons(Y,Z))) -> 2ndsneg#(N,activate(Z)) 20: 2ndspos#(s(N),cons(X,n__cons(Y,Z))) -> ACTIVATE(Z) 21: 2ndsneg#(s(N),cons(X,n__cons(Y,Z))) -> ACTIVATE(Y) 22: 2ndsneg#(s(N),cons(X,n__cons(Y,Z))) -> 2ndspos#(N,activate(Z)) 23: 2ndsneg#(s(N),cons(X,n__cons(Y,Z))) -> ACTIVATE(Z) 24: PI(X) -> 2ndspos#(X,from(0)) 25: PI(X) -> FROM(0) 26: PLUS(s(X),Y) -> PLUS(X,Y) 27: TIMES(s(X),Y) -> PLUS(Y,times(X,Y)) 28: TIMES(s(X),Y) -> TIMES(X,Y) 29: SQUARE(X) -> TIMES(X,X) 30: ACTIVATE(n__from(X)) -> FROM(X) 31: ACTIVATE(n__cons(X1,X2)) -> CONS(X1,X2) The approximated dependency graph contains 3 SCCs: {26}, {28} and {19,22}. - Consider the SCC {26}. There are no usable rules. By taking the polynomial interpretation [s](x) = x + 1 and [PLUS](x,y) = x + y + 1, rule 26 is strictly decreasing. - Consider the SCC {28}. There are no usable rules. By taking the polynomial interpretation [s](x) = x + 1 and [TIMES](x,y) = x + y + 1, rule 28 is strictly decreasing. - Consider the SCC {19,22}. The usable rules are {1,12-16}. By taking the polynomial interpretation [n__from](x) = [s](x) = x, [activate](x) = [from](x) = x + 1, [2ndsneg#](x,y) = [2ndspos#](x,y) = x + y + 1 and [cons](x,y) = [n__cons](x,y) = y + 1, the rules in {1,13,14} are weakly decreasing and the rules in {12,15,16,19,22} are strictly decreasing. Hence the TRS is terminating.