Consider the TRS R consisting of the rewrite rules 1: a__and(true,X) -> mark(X) 2: a__and(false,Y) -> false 3: a__if(true,X,Y) -> mark(X) 4: a__if(false,X,Y) -> mark(Y) 5: a__add(0,X) -> mark(X) 6: a__add(s(X),Y) -> s(add(X,Y)) 7: a__first(0,X) -> nil 8: a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z)) 9: a__from(X) -> cons(X,from(s(X))) 10: mark(and(X1,X2)) -> a__and(mark(X1),X2) 11: mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3) 12: mark(add(X1,X2)) -> a__add(mark(X1),X2) 13: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) 14: mark(from(X)) -> a__from(X) 15: mark(true) -> true 16: mark(false) -> false 17: mark(0) -> 0 18: mark(s(X)) -> s(X) 19: mark(nil) -> nil 20: mark(cons(X1,X2)) -> cons(X1,X2) 21: a__and(X1,X2) -> and(X1,X2) 22: a__if(X1,X2,X3) -> if(X1,X2,X3) 23: a__add(X1,X2) -> add(X1,X2) 24: a__first(X1,X2) -> first(X1,X2) 25: a__from(X) -> from(X) There are 14 dependency pairs: 26: A__AND(true,X) -> MARK(X) 27: A__IF(true,X,Y) -> MARK(X) 28: A__IF(false,X,Y) -> MARK(Y) 29: A__ADD(0,X) -> MARK(X) 30: MARK(and(X1,X2)) -> A__AND(mark(X1),X2) 31: MARK(and(X1,X2)) -> MARK(X1) 32: MARK(if(X1,X2,X3)) -> A__IF(mark(X1),X2,X3) 33: MARK(if(X1,X2,X3)) -> MARK(X1) 34: MARK(add(X1,X2)) -> A__ADD(mark(X1),X2) 35: MARK(add(X1,X2)) -> MARK(X1) 36: MARK(first(X1,X2)) -> A__FIRST(mark(X1),mark(X2)) 37: MARK(first(X1,X2)) -> MARK(X1) 38: MARK(first(X1,X2)) -> MARK(X2) 39: MARK(from(X)) -> A__FROM(X) The approximated dependency graph contains one SCC: {26-35,37,38}. - Consider the SCC {26-35,37,38}. By taking the polynomial interpretation [0] = [false] = [nil] = [true] = 1, [mark](x) = [s](x) = x, [a__from](x) = [from](x) = [MARK](x) = x + 1, [a__add](x,y) = [A__ADD](x,y) = [a__and](x,y) = [A__AND](x,y) = [a__first](x,y) = [add](x,y) = [and](x,y) = [first](x,y) = x + y + 1, [a__if](x,y,z) = [A__IF](x,y,z) = [if](x,y,z) = x + y + z + 1 and [cons](x,y) = y, the rules in {6,8-25} are weakly decreasing and the rules in {1-5,7,26-35,37,38} are strictly decreasing. Hence the TRS is terminating.