Consider the TRS R consisting of the rewrite rules 1: f(x,y,z) -> g(x <= y,x,y,z) 2: g(true,x,y,z) -> z 3: g(false,x,y,z) -> f(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)) 4: p(0) -> 0 5: p(s(x)) -> x There are 8 dependency pairs: 6: F(x,y,z) -> G(x <= y,x,y,z) 7: G(false,x,y,z) -> F(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)) 8: G(false,x,y,z) -> F(p(x),y,z) 9: G(false,x,y,z) -> P(x) 10: G(false,x,y,z) -> F(p(y),z,x) 11: G(false,x,y,z) -> P(y) 12: G(false,x,y,z) -> F(p(z),x,y) 13: G(false,x,y,z) -> P(z) The approximated dependency graph contains no SCCs and hence the TRS is trivially terminating.